二维台站网络上的 Pc5 地磁脉冲研究

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geomagnetism and Aeronomy Pub Date : 2024-10-27 DOI:10.1134/S0016793224600656
Yu. A. Kopytenko, V. S. Ismagilov
{"title":"二维台站网络上的 Pc5 地磁脉冲研究","authors":"Yu. A. Kopytenko,&nbsp;V. S. Ismagilov","doi":"10.1134/S0016793224600656","DOIUrl":null,"url":null,"abstract":"<p>Using data from the 2D IMAGE network and magnetic stations located in Russia, Pc5 geomagnetic pulsations with a frequency of ~2.8 mHz, which occurred in the afternoon sector against the background of the magnetic storm of August 27, 2014, preceded by a 5-day period with low magnetic activity, are studied in detail. In two time intervals, at the beginning of the storm and during the period of maximum magnetic activity, instantaneous 2D distributions of Pc5 magnetic field amplitudes on Earth’s surface are plotted. It has been found that the ionospheric sources of Pc5 (vortex Hall currents) have an elliptical shape with a larger axis in the south–north direction. At the beginning of the magnetic storm, a single burst of Pc5 pulsations was detected, the center of the source of which was located at the geomagnetic latitude ~67.5° (<i>L</i> ~ 6.8 <i>R</i><sub><i>E</i></sub>) and moved westward with a velocity of ~0.7 km/s. The estimated size of this ionospheric source is ~150 km in the west–east direction and ~330 km in the south–north direction. During the maximum of the magnetic storm, Pc5 pulsations are produced by two ionospheric sources following each other. These ionospheric sources have a more elongated elliptical shape with axes of ~250 km in the west–east direction and ~670 km in the south–north direction. The centers of these sources were shifted by 4° to a more southern geomagnetic latitude ~63.5° (<i>L</i> ~ 5 <i>R</i><sub><i>E</i></sub>) and moved westward with a velocity of ~1.7 km/s. Estimates of the size of the two-time magnetic field tube in which the resonance MHD waves have been generated and its velocity in the equatorial plane of the magnetosphere are presented.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Pc5 Geomagnetic Pulsations on a 2D Network of Stations\",\"authors\":\"Yu. A. Kopytenko,&nbsp;V. S. Ismagilov\",\"doi\":\"10.1134/S0016793224600656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using data from the 2D IMAGE network and magnetic stations located in Russia, Pc5 geomagnetic pulsations with a frequency of ~2.8 mHz, which occurred in the afternoon sector against the background of the magnetic storm of August 27, 2014, preceded by a 5-day period with low magnetic activity, are studied in detail. In two time intervals, at the beginning of the storm and during the period of maximum magnetic activity, instantaneous 2D distributions of Pc5 magnetic field amplitudes on Earth’s surface are plotted. It has been found that the ionospheric sources of Pc5 (vortex Hall currents) have an elliptical shape with a larger axis in the south–north direction. At the beginning of the magnetic storm, a single burst of Pc5 pulsations was detected, the center of the source of which was located at the geomagnetic latitude ~67.5° (<i>L</i> ~ 6.8 <i>R</i><sub><i>E</i></sub>) and moved westward with a velocity of ~0.7 km/s. The estimated size of this ionospheric source is ~150 km in the west–east direction and ~330 km in the south–north direction. During the maximum of the magnetic storm, Pc5 pulsations are produced by two ionospheric sources following each other. These ionospheric sources have a more elongated elliptical shape with axes of ~250 km in the west–east direction and ~670 km in the south–north direction. The centers of these sources were shifted by 4° to a more southern geomagnetic latitude ~63.5° (<i>L</i> ~ 5 <i>R</i><sub><i>E</i></sub>) and moved westward with a velocity of ~1.7 km/s. Estimates of the size of the two-time magnetic field tube in which the resonance MHD waves have been generated and its velocity in the equatorial plane of the magnetosphere are presented.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600656\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600656","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用位于俄罗斯的二维 IMAGE 网络和磁站的数据,详细研究了 2014 年 8 月 27 日下午扇区发生的频率为 ~2.8 mHz 的 Pc5 地磁脉动,当时的背景是磁暴,之前有 5 天的低磁活动期。在两个时间段,即磁暴开始时和磁活动最强时,绘制了地球表面 Pc5 磁场幅值的瞬时二维分布图。研究发现,Pc5 的电离层源(涡旋霍尔电流)呈椭圆形,南北方向的轴线较大。在磁暴开始时,探测到了一次 Pc5 脉动,其源中心位于地磁纬度 ~67.5° (L ~ 6.8 RE),以 ~0.7 km/s 的速度向西移动。该电离层源的大小估计为东西方向约 150 千米,南北方向约 330 千米。在磁暴最大期间,Pc5 脉冲是由两个电离层源相继产生的。这些电离层源呈更长的椭圆形,其轴线在东西方向约为 250 公里,在南北方向约为 670 公里。这些电离层源的中心向更南的地磁纬度 ~63.5° 移动了 4°(L ~ 5 RE),并以 ~1.7 km/s 的速度向西移动。对产生共振 MHD 波的双时磁场管的大小及其在磁层赤道平面上的速度进行了估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of Pc5 Geomagnetic Pulsations on a 2D Network of Stations

Using data from the 2D IMAGE network and magnetic stations located in Russia, Pc5 geomagnetic pulsations with a frequency of ~2.8 mHz, which occurred in the afternoon sector against the background of the magnetic storm of August 27, 2014, preceded by a 5-day period with low magnetic activity, are studied in detail. In two time intervals, at the beginning of the storm and during the period of maximum magnetic activity, instantaneous 2D distributions of Pc5 magnetic field amplitudes on Earth’s surface are plotted. It has been found that the ionospheric sources of Pc5 (vortex Hall currents) have an elliptical shape with a larger axis in the south–north direction. At the beginning of the magnetic storm, a single burst of Pc5 pulsations was detected, the center of the source of which was located at the geomagnetic latitude ~67.5° (L ~ 6.8 RE) and moved westward with a velocity of ~0.7 km/s. The estimated size of this ionospheric source is ~150 km in the west–east direction and ~330 km in the south–north direction. During the maximum of the magnetic storm, Pc5 pulsations are produced by two ionospheric sources following each other. These ionospheric sources have a more elongated elliptical shape with axes of ~250 km in the west–east direction and ~670 km in the south–north direction. The centers of these sources were shifted by 4° to a more southern geomagnetic latitude ~63.5° (L ~ 5 RE) and moved westward with a velocity of ~1.7 km/s. Estimates of the size of the two-time magnetic field tube in which the resonance MHD waves have been generated and its velocity in the equatorial plane of the magnetosphere are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
期刊最新文献
Calculation of Geomagnetic Cutoff Rigidity Using Tracing Based on the Buneman–Boris Method Evaluation of Dynamic Attributes and Variability of Ionospheric Slant Total Electron Content Using NavIC Satellite System Predicting the Unpredictable: Advancements in Earthquake Forecasting Using Artificial Intelligence and LSTM Networks Ionospheric Whispers of the Earth’s Tremors: Decoding TEC Mysteries in the East Anatolian Fault Zone On the Possible Relationship of a Set of Statistically Revealed Quasi-Linear Local Trends of Variations in the Magnetic Field Parameters Prior to Earthquakes in Seismically Active Zones of the Black Sea, Caucasus, and Western Asia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1