{"title":"绿色电磁干扰屏蔽新系统:具有多波段绿色电磁屏蔽、传感和红外隐身能力的有机水凝胶","authors":"JiangYu Fang, Jian Xu, Peiyuan Zuo, Yukang Zhou, Chuanhao Tang, Jun Qian, Ruoqi Wang, Xiaoyun Liu, Qixin Zhuang","doi":"10.1016/j.jmst.2024.10.005","DOIUrl":null,"url":null,"abstract":"Current research on green EMI shielding materials is often based on the misconception that absorption-dominated shielding is achieved when reflection loss (SE<sub>R</sub>) exceeds absorption loss (SE<sub>A</sub>). Although this misconception has been corrected by a large body of literature, few studies have actually achieved absorbed power (A) greater than reflected power (R). In this study, PVA, glycerol and MXene were combined to form an organohydrogel (PMG) with oriented pores. The gel displays remarkable flexibility and strength, attributed to its robust network of hydrogen bond cross-links (the hysteresis return line remains stable under 1000 compression cycles). The PMG20-3 organohydrogel (0.78 wt% MXene) demonstrates a shielding performance of 42.34 dB (A/R=1.38) in the X-band and absorbs 99.9% of power in the terahertz band. This performance exceeds that of most previously reported systems and represents a new system for green electromagnetic shielding materials. Additionally, the PMG organohydrogel has flexible sensing and infrared stealth capabilities. These findings hold great promise for the development of green electromagnetic shielding multifunctional devices.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New System for Green EMI shielding: Organohydrogel with Multi-band Green Electromagnetic Shielding, Sensing, and Infrared-Stealth Capacity\",\"authors\":\"JiangYu Fang, Jian Xu, Peiyuan Zuo, Yukang Zhou, Chuanhao Tang, Jun Qian, Ruoqi Wang, Xiaoyun Liu, Qixin Zhuang\",\"doi\":\"10.1016/j.jmst.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current research on green EMI shielding materials is often based on the misconception that absorption-dominated shielding is achieved when reflection loss (SE<sub>R</sub>) exceeds absorption loss (SE<sub>A</sub>). Although this misconception has been corrected by a large body of literature, few studies have actually achieved absorbed power (A) greater than reflected power (R). In this study, PVA, glycerol and MXene were combined to form an organohydrogel (PMG) with oriented pores. The gel displays remarkable flexibility and strength, attributed to its robust network of hydrogen bond cross-links (the hysteresis return line remains stable under 1000 compression cycles). The PMG20-3 organohydrogel (0.78 wt% MXene) demonstrates a shielding performance of 42.34 dB (A/R=1.38) in the X-band and absorbs 99.9% of power in the terahertz band. This performance exceeds that of most previously reported systems and represents a new system for green electromagnetic shielding materials. Additionally, the PMG organohydrogel has flexible sensing and infrared stealth capabilities. These findings hold great promise for the development of green electromagnetic shielding multifunctional devices.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.10.005\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.005","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
New System for Green EMI shielding: Organohydrogel with Multi-band Green Electromagnetic Shielding, Sensing, and Infrared-Stealth Capacity
Current research on green EMI shielding materials is often based on the misconception that absorption-dominated shielding is achieved when reflection loss (SER) exceeds absorption loss (SEA). Although this misconception has been corrected by a large body of literature, few studies have actually achieved absorbed power (A) greater than reflected power (R). In this study, PVA, glycerol and MXene were combined to form an organohydrogel (PMG) with oriented pores. The gel displays remarkable flexibility and strength, attributed to its robust network of hydrogen bond cross-links (the hysteresis return line remains stable under 1000 compression cycles). The PMG20-3 organohydrogel (0.78 wt% MXene) demonstrates a shielding performance of 42.34 dB (A/R=1.38) in the X-band and absorbs 99.9% of power in the terahertz band. This performance exceeds that of most previously reported systems and represents a new system for green electromagnetic shielding materials. Additionally, the PMG organohydrogel has flexible sensing and infrared stealth capabilities. These findings hold great promise for the development of green electromagnetic shielding multifunctional devices.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.