Da Huo, Biao Wang, Jinhui Fan, Kai Li, Yang Liu, Xudong Qi, Limei Zheng
{"title":"探索 (K,Na)NbO3 单晶压电特性增强的机理","authors":"Da Huo, Biao Wang, Jinhui Fan, Kai Li, Yang Liu, Xudong Qi, Limei Zheng","doi":"10.1016/j.jmat.2024.100943","DOIUrl":null,"url":null,"abstract":"(K,Na)NbO<sub>3</sub> (KNN)-based piezoelectric materials are candidates for replacing Pb-based materials. However, the piezoelectric properties of existing KNN-based single crystals are still inferior to those of Pb-based relaxor ferroelectric single crystals. Moreover, the piezoelectric response mechanism of KNN-based single crystals remains unclear. In this study, (Li,K,Na)(Nb,Sb,Ta)O<sub>3</sub>:Mn (KNNLST:Mn) single crystals with an excellent piezoelectric coefficient <em>d</em><sub>33</sub> of approximately 778 pC/N were prepared. Systematically studies of intrinsic and extrinsic piezoelectric responses have revealed that the high <em>d</em><sub>33</sub> of KNNLST:Mn single crystals is related to the shear piezoelectric response of a single-domain state and irreversible domain wall motion of the engineering domains. Furthermore, the effect of the orthorhombic (O)-tetragonal (T) phase boundary on intrinsic and extrinsic piezoelectric response is systematically studied, and the impact mechanism is elucidated. The results indicate that a lower dielectric response and elastic constant limit the intrinsic shear piezoelectric response of KNNLST:Mn single crystals, and approaching the O–T phase boundary can enhance both intrinsic and extrinsic piezoelectric responses. This study improves our understanding of the structure-performance relationship in KNN-based single crystals and offers insights for optimizing piezoelectric properties in KNN-based materials.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"101 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the mechanisms of enhanced piezoelectric properties in (K,Na)NbO3 single crystals\",\"authors\":\"Da Huo, Biao Wang, Jinhui Fan, Kai Li, Yang Liu, Xudong Qi, Limei Zheng\",\"doi\":\"10.1016/j.jmat.2024.100943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(K,Na)NbO<sub>3</sub> (KNN)-based piezoelectric materials are candidates for replacing Pb-based materials. However, the piezoelectric properties of existing KNN-based single crystals are still inferior to those of Pb-based relaxor ferroelectric single crystals. Moreover, the piezoelectric response mechanism of KNN-based single crystals remains unclear. In this study, (Li,K,Na)(Nb,Sb,Ta)O<sub>3</sub>:Mn (KNNLST:Mn) single crystals with an excellent piezoelectric coefficient <em>d</em><sub>33</sub> of approximately 778 pC/N were prepared. Systematically studies of intrinsic and extrinsic piezoelectric responses have revealed that the high <em>d</em><sub>33</sub> of KNNLST:Mn single crystals is related to the shear piezoelectric response of a single-domain state and irreversible domain wall motion of the engineering domains. Furthermore, the effect of the orthorhombic (O)-tetragonal (T) phase boundary on intrinsic and extrinsic piezoelectric response is systematically studied, and the impact mechanism is elucidated. The results indicate that a lower dielectric response and elastic constant limit the intrinsic shear piezoelectric response of KNNLST:Mn single crystals, and approaching the O–T phase boundary can enhance both intrinsic and extrinsic piezoelectric responses. This study improves our understanding of the structure-performance relationship in KNN-based single crystals and offers insights for optimizing piezoelectric properties in KNN-based materials.\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmat.2024.100943\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100943","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Exploring the mechanisms of enhanced piezoelectric properties in (K,Na)NbO3 single crystals
(K,Na)NbO3 (KNN)-based piezoelectric materials are candidates for replacing Pb-based materials. However, the piezoelectric properties of existing KNN-based single crystals are still inferior to those of Pb-based relaxor ferroelectric single crystals. Moreover, the piezoelectric response mechanism of KNN-based single crystals remains unclear. In this study, (Li,K,Na)(Nb,Sb,Ta)O3:Mn (KNNLST:Mn) single crystals with an excellent piezoelectric coefficient d33 of approximately 778 pC/N were prepared. Systematically studies of intrinsic and extrinsic piezoelectric responses have revealed that the high d33 of KNNLST:Mn single crystals is related to the shear piezoelectric response of a single-domain state and irreversible domain wall motion of the engineering domains. Furthermore, the effect of the orthorhombic (O)-tetragonal (T) phase boundary on intrinsic and extrinsic piezoelectric response is systematically studied, and the impact mechanism is elucidated. The results indicate that a lower dielectric response and elastic constant limit the intrinsic shear piezoelectric response of KNNLST:Mn single crystals, and approaching the O–T phase boundary can enhance both intrinsic and extrinsic piezoelectric responses. This study improves our understanding of the structure-performance relationship in KNN-based single crystals and offers insights for optimizing piezoelectric properties in KNN-based materials.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.