{"title":"基于全细胞化学酶法的氚代α-羟基酸和α-氨基酸的稳健合成","authors":"Cangsong Liao","doi":"10.1002/adsc.202401330","DOIUrl":null,"url":null,"abstract":"Deuterated hydroxyl acids and amino acids have been widely utilized in life science, biochemistry and drug development. Site-selective and stereoselective synthesis of deuterated hydroxyl acids and amino acids remains a significant challenge. Here, we report the development of a robust whole-cell-based chemoenzymatic platform for the synthesis of deuterated hydroxyl acids and amino acids from off-the-shelf aldehydes in high yields with excellent selectivities and levels of deuteration. The platform delivers products with diverse scaffolds and deuteration patterns, as well as broad scopes with both aromatic and aliphatic side chains. The application of the platform was demonstrated by the concise synthesis of a deuterium-containing antiparkinson's disease candidate. This platform provides a concrete foundation for accessing amino acid isotopologs for potential applications in research and drug discovery and development.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"237 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust whole-cell-based chemoenzymatic synthesis of site-selective deuterated α-hydroxy acids and α-amino acids\",\"authors\":\"Cangsong Liao\",\"doi\":\"10.1002/adsc.202401330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deuterated hydroxyl acids and amino acids have been widely utilized in life science, biochemistry and drug development. Site-selective and stereoselective synthesis of deuterated hydroxyl acids and amino acids remains a significant challenge. Here, we report the development of a robust whole-cell-based chemoenzymatic platform for the synthesis of deuterated hydroxyl acids and amino acids from off-the-shelf aldehydes in high yields with excellent selectivities and levels of deuteration. The platform delivers products with diverse scaffolds and deuteration patterns, as well as broad scopes with both aromatic and aliphatic side chains. The application of the platform was demonstrated by the concise synthesis of a deuterium-containing antiparkinson's disease candidate. This platform provides a concrete foundation for accessing amino acid isotopologs for potential applications in research and drug discovery and development.\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"237 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/adsc.202401330\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401330","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Robust whole-cell-based chemoenzymatic synthesis of site-selective deuterated α-hydroxy acids and α-amino acids
Deuterated hydroxyl acids and amino acids have been widely utilized in life science, biochemistry and drug development. Site-selective and stereoselective synthesis of deuterated hydroxyl acids and amino acids remains a significant challenge. Here, we report the development of a robust whole-cell-based chemoenzymatic platform for the synthesis of deuterated hydroxyl acids and amino acids from off-the-shelf aldehydes in high yields with excellent selectivities and levels of deuteration. The platform delivers products with diverse scaffolds and deuteration patterns, as well as broad scopes with both aromatic and aliphatic side chains. The application of the platform was demonstrated by the concise synthesis of a deuterium-containing antiparkinson's disease candidate. This platform provides a concrete foundation for accessing amino acid isotopologs for potential applications in research and drug discovery and development.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.