用于近零损耗高电容储能的线性介质陶瓷

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-10-28 DOI:10.1016/j.mtphys.2024.101579
Xuqing Zhang , Yongping Pu , Pan Gao , Xinye Huang , Jiahui Ma , Lei Zhang , Zenghui Liu
{"title":"用于近零损耗高电容储能的线性介质陶瓷","authors":"Xuqing Zhang ,&nbsp;Yongping Pu ,&nbsp;Pan Gao ,&nbsp;Xinye Huang ,&nbsp;Jiahui Ma ,&nbsp;Lei Zhang ,&nbsp;Zenghui Liu","doi":"10.1016/j.mtphys.2024.101579","DOIUrl":null,"url":null,"abstract":"<div><div>High energy-density (<em>W</em><sub>rec</sub>) dielectric capacitors have gained a focal point in the field of power electronic systems. In this study, high energy storage density materials with near-zero loss were obtained by constructing different types of defect dipoles in linear dielectric ceramics. Mg<sup>2+</sup>and Nb<sup>5+</sup> are strategically chosen as acceptor/donor ions, effectively replacing Ti<sup>4+</sup> within Ca<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub>-based ceramics. The results indicate that under an applied electric field, specific defects such as <span><math><mrow><mo>[</mo><mrow><msubsup><mrow><mi>M</mi><mi>g</mi></mrow><mrow><mi>T</mi><mi>i</mi></mrow><mo>″</mo></msubsup><mo>−</mo><msubsup><mi>V</mi><mi>O</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow><mo>]</mo></mrow></math></span> and <span><math><mrow><mrow><msubsup><mrow><mo>[</mo><mi>N</mi><mi>b</mi></mrow><mrow><mi>T</mi><mi>i</mi></mrow><mo>·</mo></msubsup><mo>−</mo><msup><mrow><mi>T</mi><mi>i</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow><mo>]</mo></mrow></math></span>, can effectively regulate <span><math><mrow><msubsup><mi>V</mi><mi>O</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow></math></span> and electron movement, significantly reducing losses. Furthermore, high-density insulating grain boundaries, reduced <span><math><mrow><msubsup><mi>V</mi><mi>O</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow></math></span> concentrations and diminished carrier mobility contribute to enhanced resistivity, resulting in high <em>W</em><sub>rec</sub> ∼7.62 J/cm<sup>3</sup> and <em>η</em> ∼92 % at 640 kV/cm, making it one of the most promising linear dielectrics to date. Notably, <em>W</em><sub>rec</sub> and <em>η</em> remain remarkably stable across a broad range of frequencies (1–500 Hz), temperatures (25–175 °C) and numerous cycles (up to 10<sup>6</sup>). Additionally, finite element software was used to simulate the distribution of dielectric constant, electric potential, and local electric field, further verifying the correlation between microstructure and breakdown resistance. This innovative work provides a sustainable strategy to optimize the energy storage capacity of lead-free ceramics over a wide temperature range through strategic manipulation of defects.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"49 ","pages":"Article 101579"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear dielectric ceramics for near-zero loss high-capacitance energy storage\",\"authors\":\"Xuqing Zhang ,&nbsp;Yongping Pu ,&nbsp;Pan Gao ,&nbsp;Xinye Huang ,&nbsp;Jiahui Ma ,&nbsp;Lei Zhang ,&nbsp;Zenghui Liu\",\"doi\":\"10.1016/j.mtphys.2024.101579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High energy-density (<em>W</em><sub>rec</sub>) dielectric capacitors have gained a focal point in the field of power electronic systems. In this study, high energy storage density materials with near-zero loss were obtained by constructing different types of defect dipoles in linear dielectric ceramics. Mg<sup>2+</sup>and Nb<sup>5+</sup> are strategically chosen as acceptor/donor ions, effectively replacing Ti<sup>4+</sup> within Ca<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub>-based ceramics. The results indicate that under an applied electric field, specific defects such as <span><math><mrow><mo>[</mo><mrow><msubsup><mrow><mi>M</mi><mi>g</mi></mrow><mrow><mi>T</mi><mi>i</mi></mrow><mo>″</mo></msubsup><mo>−</mo><msubsup><mi>V</mi><mi>O</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow><mo>]</mo></mrow></math></span> and <span><math><mrow><mrow><msubsup><mrow><mo>[</mo><mi>N</mi><mi>b</mi></mrow><mrow><mi>T</mi><mi>i</mi></mrow><mo>·</mo></msubsup><mo>−</mo><msup><mrow><mi>T</mi><mi>i</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow><mo>]</mo></mrow></math></span>, can effectively regulate <span><math><mrow><msubsup><mi>V</mi><mi>O</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow></math></span> and electron movement, significantly reducing losses. Furthermore, high-density insulating grain boundaries, reduced <span><math><mrow><msubsup><mi>V</mi><mi>O</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow></math></span> concentrations and diminished carrier mobility contribute to enhanced resistivity, resulting in high <em>W</em><sub>rec</sub> ∼7.62 J/cm<sup>3</sup> and <em>η</em> ∼92 % at 640 kV/cm, making it one of the most promising linear dielectrics to date. Notably, <em>W</em><sub>rec</sub> and <em>η</em> remain remarkably stable across a broad range of frequencies (1–500 Hz), temperatures (25–175 °C) and numerous cycles (up to 10<sup>6</sup>). Additionally, finite element software was used to simulate the distribution of dielectric constant, electric potential, and local electric field, further verifying the correlation between microstructure and breakdown resistance. This innovative work provides a sustainable strategy to optimize the energy storage capacity of lead-free ceramics over a wide temperature range through strategic manipulation of defects.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"49 \",\"pages\":\"Article 101579\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324002554\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002554","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高能量密度(Wrec)电介质电容器已成为电力电子系统领域的焦点。在这项研究中,通过在线性介电陶瓷中构建不同类型的缺陷偶极子,获得了近零损耗的高能量存储密度材料。在 Ca0.5Sr0.5TiO3 基陶瓷中,Mg2+ 和 Nb5+ 被战略性地选择为接受/捐赠离子,有效地取代了 Ti4+。结果表明,在外加电场作用下,特定的缺陷(如和)可以有效地调节和电子运动,从而显著降低损耗。此外,高密度绝缘晶界、浓度降低和载流子迁移率减小也有助于增强电阻率,从而在 640 kV/cm 时获得较高的 Wrec ∼ 7.62 J/cm3 和 η ∼ 92%,使其成为迄今最有前途的线性电介质之一。值得注意的是,Wrec 和 η 在广泛的频率(1-500 Hz)、温度(25-175 °C)和无数次循环(多达 106 次)中都保持着显著的稳定性。此外,还使用有限元软件模拟了介电常数、电动势和局部电场的分布,进一步验证了微观结构与击穿电阻之间的相关性。这项创新工作提供了一种可持续的策略,通过对缺陷的策略性处理,在宽温度范围内优化无铅陶瓷的储能能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear dielectric ceramics for near-zero loss high-capacitance energy storage
High energy-density (Wrec) dielectric capacitors have gained a focal point in the field of power electronic systems. In this study, high energy storage density materials with near-zero loss were obtained by constructing different types of defect dipoles in linear dielectric ceramics. Mg2+and Nb5+ are strategically chosen as acceptor/donor ions, effectively replacing Ti4+ within Ca0.5Sr0.5TiO3-based ceramics. The results indicate that under an applied electric field, specific defects such as [MgTiVO··] and [NbTi·Ti3+], can effectively regulate VO·· and electron movement, significantly reducing losses. Furthermore, high-density insulating grain boundaries, reduced VO·· concentrations and diminished carrier mobility contribute to enhanced resistivity, resulting in high Wrec ∼7.62 J/cm3 and η ∼92 % at 640 kV/cm, making it one of the most promising linear dielectrics to date. Notably, Wrec and η remain remarkably stable across a broad range of frequencies (1–500 Hz), temperatures (25–175 °C) and numerous cycles (up to 106). Additionally, finite element software was used to simulate the distribution of dielectric constant, electric potential, and local electric field, further verifying the correlation between microstructure and breakdown resistance. This innovative work provides a sustainable strategy to optimize the energy storage capacity of lead-free ceramics over a wide temperature range through strategic manipulation of defects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Mist CVD Technology for Gallium Oxide Deposition: A Review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon Achieving ultra-high resistivity and outstanding piezoelectric properties by co-substitution in CaBi2Nb2O9 ceramics Data-driven design of thermal-mechanical multifunctional metamaterials Construction of bifunctional MOF-based composite electrocatalysts promoting oxygen evolution reaction and glucose oxidation reaction and its kinetic deciphering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1