{"title":"针对 DLP 3D 打印工艺优化的界面策略的最新创新。","authors":"Lei Wu, Yanlin Song","doi":"10.1039/d4mh01160k","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) printing, also known as additive manufacturing, is capable of transforming computer-aided designs into intricate structures directly and on demand. This technology has garnered significant attention in recent years. Among the various approaches, digital light processing (DLP) 3D printing, which utilizes polymers or prepolymers as the ink, has emerged as the leading new technology, driven by high demand across diverse fields such as customized production, healthcare, education, and art design. DLP 3D printing technology employs cured slices as molding units and is recognized for its potential to achieve both high printing speed and resolution. Recent insights into the DLP printing process highlight its inherent interface transformations between liquid and solid states. This review summarizes key aspects of the printing process, speed, precision, and material diversity optimization, from the view of interfacial interactions between solid and liquid phases which are influenced by resin formation, curing surfaces and light source properties. These interactions include those at the liquid resin-UV pattern interface, the cured structure-curing surface interface, the liquid resin-curing surface interface, and the liquid resin-cured structure interface, each contributing to the unique characteristics of the printed results. Finally, this review addresses the current challenges and limitations of DLP 3D printing, providing valuable insights for future improvements and guiding potential innovations in the field.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent innovations in interfacial strategies for DLP 3D printing process optimization.\",\"authors\":\"Lei Wu, Yanlin Song\",\"doi\":\"10.1039/d4mh01160k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) printing, also known as additive manufacturing, is capable of transforming computer-aided designs into intricate structures directly and on demand. This technology has garnered significant attention in recent years. Among the various approaches, digital light processing (DLP) 3D printing, which utilizes polymers or prepolymers as the ink, has emerged as the leading new technology, driven by high demand across diverse fields such as customized production, healthcare, education, and art design. DLP 3D printing technology employs cured slices as molding units and is recognized for its potential to achieve both high printing speed and resolution. Recent insights into the DLP printing process highlight its inherent interface transformations between liquid and solid states. This review summarizes key aspects of the printing process, speed, precision, and material diversity optimization, from the view of interfacial interactions between solid and liquid phases which are influenced by resin formation, curing surfaces and light source properties. These interactions include those at the liquid resin-UV pattern interface, the cured structure-curing surface interface, the liquid resin-curing surface interface, and the liquid resin-cured structure interface, each contributing to the unique characteristics of the printed results. Finally, this review addresses the current challenges and limitations of DLP 3D printing, providing valuable insights for future improvements and guiding potential innovations in the field.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01160k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01160k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
三维(3D)打印,又称增材制造,能够直接按需将计算机辅助设计转化为复杂的结构。近年来,这项技术备受关注。在各种方法中,利用聚合物或预聚合物作为墨水的数字光处理(DLP)三维打印技术,在定制生产、医疗保健、教育和艺术设计等不同领域的高需求推动下,已成为领先的新技术。DLP 三维打印技术采用固化切片作为成型单元,具有实现高速打印和高分辨率的潜力。最近对 DLP 打印过程的深入研究突显了其固有的液态和固态之间的界面转换。本综述从固相和液相之间的界面相互作用的角度,总结了印刷工艺、速度、精度和材料多样性优化的关键方面,这些相互作用受到树脂形成、固化表面和光源特性的影响。这些相互作用包括液态树脂-紫外线图案界面、固化结构-固化表面界面、液态树脂-固化表面界面以及液态树脂-固化结构界面上的相互作用,每种相互作用都对打印结果的独特性做出了贡献。最后,本综述探讨了 DLP 3D 打印目前面临的挑战和局限性,为未来的改进提供了宝贵的见解,并为该领域潜在的创新提供了指导。
Recent innovations in interfacial strategies for DLP 3D printing process optimization.
Three-dimensional (3D) printing, also known as additive manufacturing, is capable of transforming computer-aided designs into intricate structures directly and on demand. This technology has garnered significant attention in recent years. Among the various approaches, digital light processing (DLP) 3D printing, which utilizes polymers or prepolymers as the ink, has emerged as the leading new technology, driven by high demand across diverse fields such as customized production, healthcare, education, and art design. DLP 3D printing technology employs cured slices as molding units and is recognized for its potential to achieve both high printing speed and resolution. Recent insights into the DLP printing process highlight its inherent interface transformations between liquid and solid states. This review summarizes key aspects of the printing process, speed, precision, and material diversity optimization, from the view of interfacial interactions between solid and liquid phases which are influenced by resin formation, curing surfaces and light source properties. These interactions include those at the liquid resin-UV pattern interface, the cured structure-curing surface interface, the liquid resin-curing surface interface, and the liquid resin-cured structure interface, each contributing to the unique characteristics of the printed results. Finally, this review addresses the current challenges and limitations of DLP 3D printing, providing valuable insights for future improvements and guiding potential innovations in the field.