Joanna Woo, Gaoyuan Cao, Nikhil Karmacharya, Jordan Lee, Justin Lee, Kingsley C Duru, Conor McClenaghan, Steven S An, Reynold A Panettieri, Joseph A Jude
{"title":"VRAC 复合物调节人气道平滑肌缩短过程中的机电信号反应","authors":"Joanna Woo, Gaoyuan Cao, Nikhil Karmacharya, Jordan Lee, Justin Lee, Kingsley C Duru, Conor McClenaghan, Steven S An, Reynold A Panettieri, Joseph A Jude","doi":"10.1165/rcmb.2024-0160OC","DOIUrl":null,"url":null,"abstract":"<p><p>Leucine-rich repeat containing 8A (LRRC8A) is an obligatory constituent of the volume-regulated anion channel (VRAC) that is fundamental to a wide range of biological processes, including regulating cell size, proliferation, and migration. Here we explored the physiological role for VRAC in excitation-contraction (E-C) coupling and shortening of human airway smooth muscle (HASM). In HASM cells, pharmacological inhibition of VRAC with DCPIB (0.1-10 μM) markedly attenuated swell-activated Cl<sup>-</sup> conductance and contractile agonist (histamine or carbachol)-induced cellular stiffening as measured by single-cell patch clamp and optical magnetic twisting cytometry, respectively. In addition, HASM cells treated with DCPIB or transfected with LRRC8A-targeting siRNA showed reduced agonist-induced phosphorylation of protein kinase B (AKT), paxillin, myosin phosphatase target subunit 1 (MYPT1), and myosin light chain (MLC). Consistent with the changes of these E-C coupling effectors, DCPIB appreciably decreased agonist-induced small airways narrowing in human precision-cut lung slices (hPCLS). Taken together, our findings shed a new light on the mechanistic link between HASM shortening and regulatory volume decrease via LRRC8A, revealing a previously unrecognized nodal point for modulation of the E-C coupling and acute airways constriction.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VRAC Complex Modulates Mechano-Electrical Signal Responses in Human Airway Smooth Muscle Shortening.\",\"authors\":\"Joanna Woo, Gaoyuan Cao, Nikhil Karmacharya, Jordan Lee, Justin Lee, Kingsley C Duru, Conor McClenaghan, Steven S An, Reynold A Panettieri, Joseph A Jude\",\"doi\":\"10.1165/rcmb.2024-0160OC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leucine-rich repeat containing 8A (LRRC8A) is an obligatory constituent of the volume-regulated anion channel (VRAC) that is fundamental to a wide range of biological processes, including regulating cell size, proliferation, and migration. Here we explored the physiological role for VRAC in excitation-contraction (E-C) coupling and shortening of human airway smooth muscle (HASM). In HASM cells, pharmacological inhibition of VRAC with DCPIB (0.1-10 μM) markedly attenuated swell-activated Cl<sup>-</sup> conductance and contractile agonist (histamine or carbachol)-induced cellular stiffening as measured by single-cell patch clamp and optical magnetic twisting cytometry, respectively. In addition, HASM cells treated with DCPIB or transfected with LRRC8A-targeting siRNA showed reduced agonist-induced phosphorylation of protein kinase B (AKT), paxillin, myosin phosphatase target subunit 1 (MYPT1), and myosin light chain (MLC). Consistent with the changes of these E-C coupling effectors, DCPIB appreciably decreased agonist-induced small airways narrowing in human precision-cut lung slices (hPCLS). Taken together, our findings shed a new light on the mechanistic link between HASM shortening and regulatory volume decrease via LRRC8A, revealing a previously unrecognized nodal point for modulation of the E-C coupling and acute airways constriction.</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2024-0160OC\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0160OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
VRAC Complex Modulates Mechano-Electrical Signal Responses in Human Airway Smooth Muscle Shortening.
Leucine-rich repeat containing 8A (LRRC8A) is an obligatory constituent of the volume-regulated anion channel (VRAC) that is fundamental to a wide range of biological processes, including regulating cell size, proliferation, and migration. Here we explored the physiological role for VRAC in excitation-contraction (E-C) coupling and shortening of human airway smooth muscle (HASM). In HASM cells, pharmacological inhibition of VRAC with DCPIB (0.1-10 μM) markedly attenuated swell-activated Cl- conductance and contractile agonist (histamine or carbachol)-induced cellular stiffening as measured by single-cell patch clamp and optical magnetic twisting cytometry, respectively. In addition, HASM cells treated with DCPIB or transfected with LRRC8A-targeting siRNA showed reduced agonist-induced phosphorylation of protein kinase B (AKT), paxillin, myosin phosphatase target subunit 1 (MYPT1), and myosin light chain (MLC). Consistent with the changes of these E-C coupling effectors, DCPIB appreciably decreased agonist-induced small airways narrowing in human precision-cut lung slices (hPCLS). Taken together, our findings shed a new light on the mechanistic link between HASM shortening and regulatory volume decrease via LRRC8A, revealing a previously unrecognized nodal point for modulation of the E-C coupling and acute airways constriction.
期刊介绍:
The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.