在脊柱侧弯评估中,中心点人工智能模型在自动估计钴角方面的性能优于 VFLDNet。

IF 2.6 3区 医学 Q2 CLINICAL NEUROLOGY European Spine Journal Pub Date : 2024-12-01 Epub Date: 2024-10-29 DOI:10.1007/s00586-024-08538-6
Qingqing Lu, Lixin Ni, Zhehao Zhang, Lulin Zou, Lijun Guo, Yuning Pan
{"title":"在脊柱侧弯评估中,中心点人工智能模型在自动估计钴角方面的性能优于 VFLDNet。","authors":"Qingqing Lu, Lixin Ni, Zhehao Zhang, Lulin Zou, Lijun Guo, Yuning Pan","doi":"10.1007/s00586-024-08538-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Aims to establish the superiority of our proposed model over the state-of-the-art vertebra-focused landmark detection network (VFLDNet) in automating Cobb angle estimation from spinal radiographs.</p><p><strong>Methods: </strong>Utilizing a private dataset for external validation, we compared the performance of our center-point detection-based vertebra localization and tilt estimation network (VLTENet) with the key-point detection-based VFLDNet. Both models' Cobb angle predictions were rigorously evaluated against manual consensus score using metrics such as mean absolute error (MAE), correlation coefficient, intraclass correlation coefficient (ICC), Fleiss' kappa, Bland-Altman analysis, and classification metrics [sensitivity (SN), specificity, accuracy] focusing on major curve estimation and scoliosis severity classification.</p><p><strong>Results: </strong>A retrospective analysis of 118 cases with 342 Cobb angle measurements revealed that our model achieved a MAE of 2.15° for total Cobb angles and 1.89° for the major curve, significantly outperforming VFLDNet's MAE of 2.80°and 2.57°, respectively. Both models demonstrated robust correlation and ICC, but our model excelled in classification consistency, particularly in predicting major curve magnitude (ours: kappa = 0.83; VFLDNet: kappa = 0.67). In subgroup analyses by scoliosis severity, our model consistently surpassed VFLDNet, displaying superior mean (SD) differences, narrower limits of agreement, and higher SN, specificity, and accuracy, most notably in moderate (ours: SN = 86.84%; VFLDNet: SN = 83.16%) to severe (ours: SN = 92.86%; VFLDNet: SN = 85.71%) scoliosis.</p><p><strong>Conclusion: </strong>Our model emerges as the superior choice for automated Cobb angle estimation, particularly in assessing major curve and moderate to severe scoliosis, underscoring its potential to revolutionize clinical workflows and enhance patient care.</p>","PeriodicalId":12323,"journal":{"name":"European Spine Journal","volume":" ","pages":"4710-4719"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior performance of a center-point AI model over VFLDNet in automated cobb angle estimation for scoliosis assessment.\",\"authors\":\"Qingqing Lu, Lixin Ni, Zhehao Zhang, Lulin Zou, Lijun Guo, Yuning Pan\",\"doi\":\"10.1007/s00586-024-08538-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Aims to establish the superiority of our proposed model over the state-of-the-art vertebra-focused landmark detection network (VFLDNet) in automating Cobb angle estimation from spinal radiographs.</p><p><strong>Methods: </strong>Utilizing a private dataset for external validation, we compared the performance of our center-point detection-based vertebra localization and tilt estimation network (VLTENet) with the key-point detection-based VFLDNet. Both models' Cobb angle predictions were rigorously evaluated against manual consensus score using metrics such as mean absolute error (MAE), correlation coefficient, intraclass correlation coefficient (ICC), Fleiss' kappa, Bland-Altman analysis, and classification metrics [sensitivity (SN), specificity, accuracy] focusing on major curve estimation and scoliosis severity classification.</p><p><strong>Results: </strong>A retrospective analysis of 118 cases with 342 Cobb angle measurements revealed that our model achieved a MAE of 2.15° for total Cobb angles and 1.89° for the major curve, significantly outperforming VFLDNet's MAE of 2.80°and 2.57°, respectively. Both models demonstrated robust correlation and ICC, but our model excelled in classification consistency, particularly in predicting major curve magnitude (ours: kappa = 0.83; VFLDNet: kappa = 0.67). In subgroup analyses by scoliosis severity, our model consistently surpassed VFLDNet, displaying superior mean (SD) differences, narrower limits of agreement, and higher SN, specificity, and accuracy, most notably in moderate (ours: SN = 86.84%; VFLDNet: SN = 83.16%) to severe (ours: SN = 92.86%; VFLDNet: SN = 85.71%) scoliosis.</p><p><strong>Conclusion: </strong>Our model emerges as the superior choice for automated Cobb angle estimation, particularly in assessing major curve and moderate to severe scoliosis, underscoring its potential to revolutionize clinical workflows and enhance patient care.</p>\",\"PeriodicalId\":12323,\"journal\":{\"name\":\"European Spine Journal\",\"volume\":\" \",\"pages\":\"4710-4719\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Spine Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00586-024-08538-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00586-024-08538-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:在从脊柱X光片自动估算Cobb角方面,我们提出的模型优于最先进的以椎体为中心的地标检测网络(VFLDNet):我们利用私人数据集进行外部验证,比较了基于中心点检测的椎体定位和倾斜估计网络(VLTENet)与基于关键点检测的 VFLDNet 的性能。我们使用平均绝对误差(MAE)、相关系数、类内相关系数(ICC)、弗莱斯卡帕(Fleiss'kappa)、布兰-阿尔特曼分析(Bland-Altman analysis)等指标,以及分类指标[灵敏度(SN)、特异性、准确性](侧重于主要曲线估计和脊柱侧凸严重程度分类),对照人工共识评分对两种模型的 Cobb 角预测进行了严格评估:对 118 个病例的 342 次 Cobb 角测量结果进行回顾性分析后发现,我们的模型在总 Cobb 角和主要曲线方面的 MAE 分别为 2.15°和 1.89°,明显优于 VFLDNet 的 MAE(分别为 2.80°和 2.57°)。两个模型都表现出了很强的相关性和 ICC,但我们的模型在分类一致性方面更胜一筹,尤其是在预测主要曲线幅度方面(我们的模型:kappa = 0.83;VFLDNet:kappa = 0.67)。在按脊柱侧凸严重程度进行的亚组分析中,我们的模型始终优于 VFLDNet,显示出更优越的平均(标清)差异、更窄的一致性限制以及更高的 SN、特异性和准确性,尤其是在中度(我们的:SN = 86.84%;VFLDNet:SN = 83.16%)至重度(我们的:SN = 92.86%;VFLDNet:SN = 85.71%)脊柱侧凸中:结论:我们的模型是自动估算 Cobb 角度的最佳选择,尤其是在评估主要曲线和中重度脊柱侧凸方面,它具有彻底改变临床工作流程和改善患者护理的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superior performance of a center-point AI model over VFLDNet in automated cobb angle estimation for scoliosis assessment.

Purpose: Aims to establish the superiority of our proposed model over the state-of-the-art vertebra-focused landmark detection network (VFLDNet) in automating Cobb angle estimation from spinal radiographs.

Methods: Utilizing a private dataset for external validation, we compared the performance of our center-point detection-based vertebra localization and tilt estimation network (VLTENet) with the key-point detection-based VFLDNet. Both models' Cobb angle predictions were rigorously evaluated against manual consensus score using metrics such as mean absolute error (MAE), correlation coefficient, intraclass correlation coefficient (ICC), Fleiss' kappa, Bland-Altman analysis, and classification metrics [sensitivity (SN), specificity, accuracy] focusing on major curve estimation and scoliosis severity classification.

Results: A retrospective analysis of 118 cases with 342 Cobb angle measurements revealed that our model achieved a MAE of 2.15° for total Cobb angles and 1.89° for the major curve, significantly outperforming VFLDNet's MAE of 2.80°and 2.57°, respectively. Both models demonstrated robust correlation and ICC, but our model excelled in classification consistency, particularly in predicting major curve magnitude (ours: kappa = 0.83; VFLDNet: kappa = 0.67). In subgroup analyses by scoliosis severity, our model consistently surpassed VFLDNet, displaying superior mean (SD) differences, narrower limits of agreement, and higher SN, specificity, and accuracy, most notably in moderate (ours: SN = 86.84%; VFLDNet: SN = 83.16%) to severe (ours: SN = 92.86%; VFLDNet: SN = 85.71%) scoliosis.

Conclusion: Our model emerges as the superior choice for automated Cobb angle estimation, particularly in assessing major curve and moderate to severe scoliosis, underscoring its potential to revolutionize clinical workflows and enhance patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Spine Journal
European Spine Journal 医学-临床神经学
CiteScore
4.80
自引率
10.70%
发文量
373
审稿时长
2-4 weeks
期刊介绍: "European Spine Journal" is a publication founded in response to the increasing trend toward specialization in spinal surgery and spinal pathology in general. The Journal is devoted to all spine related disciplines, including functional and surgical anatomy of the spine, biomechanics and pathophysiology, diagnostic procedures, and neurology, surgery and outcomes. The aim of "European Spine Journal" is to support the further development of highly innovative spine treatments including but not restricted to surgery and to provide an integrated and balanced view of diagnostic, research and treatment procedures as well as outcomes that will enhance effective collaboration among specialists worldwide. The “European Spine Journal” also participates in education by means of videos, interactive meetings and the endorsement of educative efforts. Official publication of EUROSPINE, The Spine Society of Europe
期刊最新文献
Longitudinal impact of leisure-time physical activity on pain intensity and daily activity limitation in people with low back pain. Findings from the PAMPA cohort. Epidemiology of pediatric spinal trauma with neurological deficits in Catalonia: a 36-year experience. Morphological features of lower lumbar degenerative kyphosis. MRI study on the influence of lumbosacral vertebral body and disc factors on lumbar lordosis in children. Presence of compensatory curve predicts postoperative curve progression in congenital scoliosis after thoracolumbar hemivertebra resection and short fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1