{"title":"BES-Designer:设计用于碱基编辑的引导 RNA 以简化文库的网络工具。","authors":"Qian Zhou, Qian Gao, Yujia Gao, Youhua Zhang, Yanjun Chen, Min Li, Pengcheng Wei, Zhenyu Yue","doi":"10.1007/s12539-024-00663-6","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas base editors offer precise conversion of single nucleotides without inducing double-strand breaks. This technology finds extensive applications in gene therapy, gene function analysis, and other domains. However, a crucial challenge lies in selecting the appropriate guide RNAs (gRNAs) for base editing. Although various gRNAs design tools exist, creating a simplified base-editing library with diverse protospacer adjacent motifs (PAM) sequences for gRNAs screening remains a challenge. We present a user-friendly web tool, BES-Designer ( https://bes-designer.aielab.net ), for gRNAs design based on base editors, aimed at streamlining the creation of a base-editing library. BES-Designer incorporates our proposed rules for target sequence simplification, helping researchers narrow down the scope of biological experiments in the lab. It allows users to design target sequences with various PAMs and editing types simultaneously, and prioritize them in the simplified base-editing library. This tool has been experimentally proven to achieve a 30% simplification efficiency on the base-editing-library.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BES-Designer: A Web Tool to Design Guide RNAs for Base Editing to Simplify Library.\",\"authors\":\"Qian Zhou, Qian Gao, Yujia Gao, Youhua Zhang, Yanjun Chen, Min Li, Pengcheng Wei, Zhenyu Yue\",\"doi\":\"10.1007/s12539-024-00663-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR/Cas base editors offer precise conversion of single nucleotides without inducing double-strand breaks. This technology finds extensive applications in gene therapy, gene function analysis, and other domains. However, a crucial challenge lies in selecting the appropriate guide RNAs (gRNAs) for base editing. Although various gRNAs design tools exist, creating a simplified base-editing library with diverse protospacer adjacent motifs (PAM) sequences for gRNAs screening remains a challenge. We present a user-friendly web tool, BES-Designer ( https://bes-designer.aielab.net ), for gRNAs design based on base editors, aimed at streamlining the creation of a base-editing library. BES-Designer incorporates our proposed rules for target sequence simplification, helping researchers narrow down the scope of biological experiments in the lab. It allows users to design target sequences with various PAMs and editing types simultaneously, and prioritize them in the simplified base-editing library. This tool has been experimentally proven to achieve a 30% simplification efficiency on the base-editing-library.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00663-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00663-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
BES-Designer: A Web Tool to Design Guide RNAs for Base Editing to Simplify Library.
CRISPR/Cas base editors offer precise conversion of single nucleotides without inducing double-strand breaks. This technology finds extensive applications in gene therapy, gene function analysis, and other domains. However, a crucial challenge lies in selecting the appropriate guide RNAs (gRNAs) for base editing. Although various gRNAs design tools exist, creating a simplified base-editing library with diverse protospacer adjacent motifs (PAM) sequences for gRNAs screening remains a challenge. We present a user-friendly web tool, BES-Designer ( https://bes-designer.aielab.net ), for gRNAs design based on base editors, aimed at streamlining the creation of a base-editing library. BES-Designer incorporates our proposed rules for target sequence simplification, helping researchers narrow down the scope of biological experiments in the lab. It allows users to design target sequences with various PAMs and editing types simultaneously, and prioritize them in the simplified base-editing library. This tool has been experimentally proven to achieve a 30% simplification efficiency on the base-editing-library.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.