活菌输注的绵羊脓毒性休克模型。

IF 2.8 Q2 CRITICAL CARE MEDICINE Intensive Care Medicine Experimental Pub Date : 2024-10-28 DOI:10.1186/s40635-024-00684-x
Nchafatso G Obonyo, Sainath Raman, Jacky Y Suen, Kate M Peters, Minh-Duy Phan, Margaret R Passmore, Mahe Bouquet, Emily S Wilson, Kieran Hyslop, Chiara Palmieri, Nicole White, Kei Sato, Samia M Farah, Lucia Gandini, Keibun Liu, Gabriele Fior, Silver Heinsar, Shinichi Ijuin, Sun Kyun Ro, Gabriella Abbate, Carmen Ainola, Noriko Sato, Brooke Lundon, Sofia Portatadino, Reema H Rachakonda, Bailey Schneider, Amanda Harley, Louise E See Hoe, Mark A Schembri, Gianluigi Li Bassi, John F Fraser
{"title":"活菌输注的绵羊脓毒性休克模型。","authors":"Nchafatso G Obonyo, Sainath Raman, Jacky Y Suen, Kate M Peters, Minh-Duy Phan, Margaret R Passmore, Mahe Bouquet, Emily S Wilson, Kieran Hyslop, Chiara Palmieri, Nicole White, Kei Sato, Samia M Farah, Lucia Gandini, Keibun Liu, Gabriele Fior, Silver Heinsar, Shinichi Ijuin, Sun Kyun Ro, Gabriella Abbate, Carmen Ainola, Noriko Sato, Brooke Lundon, Sofia Portatadino, Reema H Rachakonda, Bailey Schneider, Amanda Harley, Louise E See Hoe, Mark A Schembri, Gianluigi Li Bassi, John F Fraser","doi":"10.1186/s40635-024-00684-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Escherichia coli is the most common cause of human bloodstream infections and bacterial sepsis/septic shock. However, translation of preclinical septic shock resuscitative therapies remains limited mainly due to low-fidelity of available models in mimicking clinical illness. To overcome the translational barrier, we sought to replicate sepsis complexity by creating an acutely critically-ill preclinical bacterial septic shock model undergoing active 48-h intensive care management.</p><p><strong>Aim: </strong>To develop a clinically relevant large-animal (ovine) live-bacterial infusion model for septic shock.</p><p><strong>Methods: </strong>Septic shock was induced by intravenous infusion of the live antibiotic resistant extra-intestinal pathogenic E. coli sequence type 131 strain EC958 in eight anesthetised and mechanically ventilated sheep. A bacterial dose range of 2 × 10<sup>5</sup>-2 × 10<sup>9</sup> cfu/mL was used for the dose optimisation phase (n = 4) and upon dose confirmation the model was developed (n = 5). Post-shock the animals underwent an early-vasopressor and volume-restriction resuscitation strategy with active haemodynamic management and monitoring over 48 h. Serial blood samples were collected for testing of pro-inflammatory (IL-6, IL-8, VEGFA) and anti-inflammatory (IL-10) cytokines and hyaluronan assay to assess endothelial integrity. Tissue samples were collected for histopathology and transmission electron microscopy.</p><p><strong>Results: </strong>The 2 × 10<sup>7</sup> cfu/mL bacterial dose led to a reproducible distributive shock within a pre-determined 12-h period. Five sheep were used to demonstrate consistency of the model. Bacterial infusion led to development of septic shock in all animals. The baseline mean arterial blood pressure reduced from a median of 91 mmHg (71, 102) to 50 mmHg (48, 57) (p = 0.004) and lactate levels increased from a median of 0.5 mM (0.3, 0.8) to 2.1 mM (2.0, 2.3) (p = 0.02) post-shock. The baseline median hyaluronan levels increased significantly from 25 ng/mL (18, 86) to 168 ng/mL (86, 569), p = 0.05 but not the median vasopressor dependency index which increased within 1 h of resuscitation from zero to 0.39 mmHg<sup>-1</sup> (0.06, 5.13), p = 0.065, and. Over the 48 h, there was a significant decrease in the systemic vascular resistance index (F = 7.46, p = 0.01) and increase in the pro-inflammatory cytokines [IL-6 (F = 8.90, p = 0.02), IL-8 (F = 5.28, p = 0.03), and VEGFA (F = 6.47, p = 0.02)].</p><p><strong>Conclusions: </strong>This critically ill large-animal model was consistent in reproducing septic shock and will be applied in investigating advanced resuscitation and therapeutic interventions.</p>","PeriodicalId":13750,"journal":{"name":"Intensive Care Medicine Experimental","volume":"12 1","pages":"94"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519284/pdf/","citationCount":"0","resultStr":"{\"title\":\"An ovine septic shock model of live bacterial infusion.\",\"authors\":\"Nchafatso G Obonyo, Sainath Raman, Jacky Y Suen, Kate M Peters, Minh-Duy Phan, Margaret R Passmore, Mahe Bouquet, Emily S Wilson, Kieran Hyslop, Chiara Palmieri, Nicole White, Kei Sato, Samia M Farah, Lucia Gandini, Keibun Liu, Gabriele Fior, Silver Heinsar, Shinichi Ijuin, Sun Kyun Ro, Gabriella Abbate, Carmen Ainola, Noriko Sato, Brooke Lundon, Sofia Portatadino, Reema H Rachakonda, Bailey Schneider, Amanda Harley, Louise E See Hoe, Mark A Schembri, Gianluigi Li Bassi, John F Fraser\",\"doi\":\"10.1186/s40635-024-00684-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Escherichia coli is the most common cause of human bloodstream infections and bacterial sepsis/septic shock. However, translation of preclinical septic shock resuscitative therapies remains limited mainly due to low-fidelity of available models in mimicking clinical illness. To overcome the translational barrier, we sought to replicate sepsis complexity by creating an acutely critically-ill preclinical bacterial septic shock model undergoing active 48-h intensive care management.</p><p><strong>Aim: </strong>To develop a clinically relevant large-animal (ovine) live-bacterial infusion model for septic shock.</p><p><strong>Methods: </strong>Septic shock was induced by intravenous infusion of the live antibiotic resistant extra-intestinal pathogenic E. coli sequence type 131 strain EC958 in eight anesthetised and mechanically ventilated sheep. A bacterial dose range of 2 × 10<sup>5</sup>-2 × 10<sup>9</sup> cfu/mL was used for the dose optimisation phase (n = 4) and upon dose confirmation the model was developed (n = 5). Post-shock the animals underwent an early-vasopressor and volume-restriction resuscitation strategy with active haemodynamic management and monitoring over 48 h. Serial blood samples were collected for testing of pro-inflammatory (IL-6, IL-8, VEGFA) and anti-inflammatory (IL-10) cytokines and hyaluronan assay to assess endothelial integrity. Tissue samples were collected for histopathology and transmission electron microscopy.</p><p><strong>Results: </strong>The 2 × 10<sup>7</sup> cfu/mL bacterial dose led to a reproducible distributive shock within a pre-determined 12-h period. Five sheep were used to demonstrate consistency of the model. Bacterial infusion led to development of septic shock in all animals. The baseline mean arterial blood pressure reduced from a median of 91 mmHg (71, 102) to 50 mmHg (48, 57) (p = 0.004) and lactate levels increased from a median of 0.5 mM (0.3, 0.8) to 2.1 mM (2.0, 2.3) (p = 0.02) post-shock. The baseline median hyaluronan levels increased significantly from 25 ng/mL (18, 86) to 168 ng/mL (86, 569), p = 0.05 but not the median vasopressor dependency index which increased within 1 h of resuscitation from zero to 0.39 mmHg<sup>-1</sup> (0.06, 5.13), p = 0.065, and. Over the 48 h, there was a significant decrease in the systemic vascular resistance index (F = 7.46, p = 0.01) and increase in the pro-inflammatory cytokines [IL-6 (F = 8.90, p = 0.02), IL-8 (F = 5.28, p = 0.03), and VEGFA (F = 6.47, p = 0.02)].</p><p><strong>Conclusions: </strong>This critically ill large-animal model was consistent in reproducing septic shock and will be applied in investigating advanced resuscitation and therapeutic interventions.</p>\",\"PeriodicalId\":13750,\"journal\":{\"name\":\"Intensive Care Medicine Experimental\",\"volume\":\"12 1\",\"pages\":\"94\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519284/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intensive Care Medicine Experimental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40635-024-00684-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intensive Care Medicine Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40635-024-00684-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

背景:大肠杆菌是导致人类血液感染和细菌性败血症/脓毒性休克的最常见原因。然而,临床前脓毒性休克复苏疗法的转化仍然受到限制,这主要是由于现有模型在模拟临床疾病方面的保真度较低。为了克服这一转化障碍,我们试图通过创建一个急性重症临床前细菌性脓毒性休克模型来复制脓毒症的复杂性,并对其进行积极的 48 小时重症监护管理:方法:对 8 只麻醉和机械通气的绵羊静脉输注耐抗生素的肠外致病性大肠杆菌序列 131 型 EC958 活菌株,诱发脓毒性休克。剂量优化阶段使用的细菌剂量范围为 2 × 105-2 × 109 cfu/mL(n = 4),在剂量确认后建立模型(n = 5)。电击后,动物接受早期加压和容量限制复苏策略,并在 48 小时内接受积极的血流动力学管理和监测。收集连续血样以检测促炎(IL-6、IL-8、VEGFA)和抗炎(IL-10)细胞因子,并进行透明质酸测定以评估内皮完整性。采集的组织样本用于组织病理学和透射电子显微镜检查:结果:2 × 107 cfu/mL 的细菌剂量可在预定的 12 小时内导致可重复的分布性休克。用五只绵羊证明了模型的一致性。细菌输注导致所有动物出现脓毒性休克。休克后,基线平均动脉血压从中位数 91 mmHg (71, 102) 降至 50 mmHg (48, 57) (p = 0.004),乳酸水平从中位数 0.5 mM (0.3, 0.8) 升至 2.1 mM (2.0, 2.3) (p = 0.02)。基线透明质酸中位数水平从 25 ng/mL (18, 86) 显著增加到 168 ng/mL (86, 569)(p = 0.05),但血管加压素依赖指数中位数没有增加,该指数在复苏后 1 小时内从零增加到 0.39 mmHg-1 (0.06, 5.13)(p = 0.065)。在 48 小时内,全身血管阻力指数显著下降(F = 7.46,p = 0.01),促炎细胞因子[IL-6(F = 8.90,p = 0.02)、IL-8(F = 5.28,p = 0.03)和 VEGFA(F = 6.47,p = 0.02)]增加:该重症大动物模型在再现脓毒性休克方面具有一致性,将用于研究先进的复苏和治疗干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ovine septic shock model of live bacterial infusion.

Background: Escherichia coli is the most common cause of human bloodstream infections and bacterial sepsis/septic shock. However, translation of preclinical septic shock resuscitative therapies remains limited mainly due to low-fidelity of available models in mimicking clinical illness. To overcome the translational barrier, we sought to replicate sepsis complexity by creating an acutely critically-ill preclinical bacterial septic shock model undergoing active 48-h intensive care management.

Aim: To develop a clinically relevant large-animal (ovine) live-bacterial infusion model for septic shock.

Methods: Septic shock was induced by intravenous infusion of the live antibiotic resistant extra-intestinal pathogenic E. coli sequence type 131 strain EC958 in eight anesthetised and mechanically ventilated sheep. A bacterial dose range of 2 × 105-2 × 109 cfu/mL was used for the dose optimisation phase (n = 4) and upon dose confirmation the model was developed (n = 5). Post-shock the animals underwent an early-vasopressor and volume-restriction resuscitation strategy with active haemodynamic management and monitoring over 48 h. Serial blood samples were collected for testing of pro-inflammatory (IL-6, IL-8, VEGFA) and anti-inflammatory (IL-10) cytokines and hyaluronan assay to assess endothelial integrity. Tissue samples were collected for histopathology and transmission electron microscopy.

Results: The 2 × 107 cfu/mL bacterial dose led to a reproducible distributive shock within a pre-determined 12-h period. Five sheep were used to demonstrate consistency of the model. Bacterial infusion led to development of septic shock in all animals. The baseline mean arterial blood pressure reduced from a median of 91 mmHg (71, 102) to 50 mmHg (48, 57) (p = 0.004) and lactate levels increased from a median of 0.5 mM (0.3, 0.8) to 2.1 mM (2.0, 2.3) (p = 0.02) post-shock. The baseline median hyaluronan levels increased significantly from 25 ng/mL (18, 86) to 168 ng/mL (86, 569), p = 0.05 but not the median vasopressor dependency index which increased within 1 h of resuscitation from zero to 0.39 mmHg-1 (0.06, 5.13), p = 0.065, and. Over the 48 h, there was a significant decrease in the systemic vascular resistance index (F = 7.46, p = 0.01) and increase in the pro-inflammatory cytokines [IL-6 (F = 8.90, p = 0.02), IL-8 (F = 5.28, p = 0.03), and VEGFA (F = 6.47, p = 0.02)].

Conclusions: This critically ill large-animal model was consistent in reproducing septic shock and will be applied in investigating advanced resuscitation and therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intensive Care Medicine Experimental
Intensive Care Medicine Experimental CRITICAL CARE MEDICINE-
CiteScore
5.10
自引率
2.90%
发文量
48
审稿时长
13 weeks
期刊最新文献
Expiratory ventilation assistance versus pressure-controlled ventilation with ambient oxygen in a hemorrhagic trauma model: a prehospital rescue option? Validation of the capnodynamic method to calculate mixed venous oxygen saturation in postoperative cardiac patients. Correction: Impact of hemoadsorption with CytoSorb® on meropenem and piperacillin exposure in critically ill patients in a post-CKRT setup: a single-center, retrospective data analysis. Machine learning-based identification of efficient and restrictive physiological subphenotypes in acute respiratory distress syndrome. Elucidating the causal relationship of mechanical power and lung injury: a dynamic approach to ventilator management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1