scSwinTNet:基于移窗注意力的大规模单细胞 RNA-Seq 数据的细胞类型注释方法

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-10-28 DOI:10.1109/JBHI.2024.3487174
Huanhuan Dai, Xiangyu Meng, Zhiyi Pan, Qing Yang, Haonan Song, Yuan Gao, Xun Wang
{"title":"scSwinTNet:基于移窗注意力的大规模单细胞 RNA-Seq 数据的细胞类型注释方法","authors":"Huanhuan Dai, Xiangyu Meng, Zhiyi Pan, Qing Yang, Haonan Song, Yuan Gao, Xun Wang","doi":"10.1109/JBHI.2024.3487174","DOIUrl":null,"url":null,"abstract":"<p><p>The annotation of cell types based on single-cell RNA sequencing (scRNA-seq) data is a critical downstream task in single-cell analysis, with significant implications for a deeper understanding of biological processes. Most analytical methods cluster cells by unsupervised clustering, which requires manual annotation for cell type determination. This procedure is time-overwhelming and non-repeatable. To accommodate the exponential growth of sequencing cells, reduce the impact of data bias, and integrate large-scale datasets for further improvement of type annotation accuracy, we proposed scSwinTNet. It is a pre-trained tool for annotating cell types in scRNA-seq data, which uses self-attention based on shifted windows and enables intelligent information extraction from gene data. We demonstrated the effectiveness and robustness of scSwinTNet by using 399 760 cells from human and mouse tissues. To the best of our knowledge, scSwinTNet is the first model to annotate cell types in scRNA-seq data using a pre-trained shifted window attention-based model. It does not require a priori knowledge and accurately annotates cell types without manual annotation.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scSwinTNet: A Cell Type Annotation Method for Large-Scale Single-Cell RNA-Seq Data Based on Shifted Window Attention.\",\"authors\":\"Huanhuan Dai, Xiangyu Meng, Zhiyi Pan, Qing Yang, Haonan Song, Yuan Gao, Xun Wang\",\"doi\":\"10.1109/JBHI.2024.3487174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The annotation of cell types based on single-cell RNA sequencing (scRNA-seq) data is a critical downstream task in single-cell analysis, with significant implications for a deeper understanding of biological processes. Most analytical methods cluster cells by unsupervised clustering, which requires manual annotation for cell type determination. This procedure is time-overwhelming and non-repeatable. To accommodate the exponential growth of sequencing cells, reduce the impact of data bias, and integrate large-scale datasets for further improvement of type annotation accuracy, we proposed scSwinTNet. It is a pre-trained tool for annotating cell types in scRNA-seq data, which uses self-attention based on shifted windows and enables intelligent information extraction from gene data. We demonstrated the effectiveness and robustness of scSwinTNet by using 399 760 cells from human and mouse tissues. To the best of our knowledge, scSwinTNet is the first model to annotate cell types in scRNA-seq data using a pre-trained shifted window attention-based model. It does not require a priori knowledge and accurately annotates cell types without manual annotation.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3487174\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3487174","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

根据单细胞 RNA 测序(scRNA-seq)数据标注细胞类型是单细胞分析的一项关键下游任务,对深入了解生物过程具有重要意义。大多数分析方法都是通过无监督聚类对细胞进行聚类,这需要人工标注来确定细胞类型。这一过程耗时长,且不可重复。为了适应细胞测序的指数级增长,减少数据偏差的影响,并整合大规模数据集以进一步提高类型标注的准确性,我们提出了 scSwinTNet。它是一种用于在 scRNA-seq 数据中注释细胞类型的预训练工具,利用基于移位窗口的自注意,实现了从基因数据中的智能信息提取。我们利用来自人类和小鼠组织的 399 760 个细胞证明了 scSwinTNet 的有效性和稳健性。据我们所知,scSwinTNet 是第一个使用预先训练好的基于移窗注意力的模型来注释 scRNA-seq 数据中细胞类型的模型。它不需要先验知识,无需人工标注即可准确标注细胞类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scSwinTNet: A Cell Type Annotation Method for Large-Scale Single-Cell RNA-Seq Data Based on Shifted Window Attention.

The annotation of cell types based on single-cell RNA sequencing (scRNA-seq) data is a critical downstream task in single-cell analysis, with significant implications for a deeper understanding of biological processes. Most analytical methods cluster cells by unsupervised clustering, which requires manual annotation for cell type determination. This procedure is time-overwhelming and non-repeatable. To accommodate the exponential growth of sequencing cells, reduce the impact of data bias, and integrate large-scale datasets for further improvement of type annotation accuracy, we proposed scSwinTNet. It is a pre-trained tool for annotating cell types in scRNA-seq data, which uses self-attention based on shifted windows and enables intelligent information extraction from gene data. We demonstrated the effectiveness and robustness of scSwinTNet by using 399 760 cells from human and mouse tissues. To the best of our knowledge, scSwinTNet is the first model to annotate cell types in scRNA-seq data using a pre-trained shifted window attention-based model. It does not require a priori knowledge and accurately annotates cell types without manual annotation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Machine Learning Identification and Classification of Mitosis and Migration of Cancer Cells in a Lab-on-CMOS Capacitance Sensing platform. Biomedical Information Integration via Adaptive Large Language Model Construction. BloodPatrol: Revolutionizing Blood Cancer Diagnosis - Advanced Real-Time Detection Leveraging Deep Learning & Cloud Technologies. EEG Detection and Prediction of Freezing of Gait in Parkinson's Disease Based on Spatiotemporal Coherent Modes. Functional Data Analysis of Hand Rotation for Open Surgical Suturing Skill Assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1