利用 CT 对肺癌患者进行放射基因组学研究的预后价值:系统综述。

IF 4.1 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Insights into Imaging Pub Date : 2024-10-28 DOI:10.1186/s13244-024-01831-4
Yixiao Jiang, Chuan Gao, Yilin Shao, Xinjing Lou, Meiqi Hua, Jiangnan Lin, Linyu Wu, Chen Gao
{"title":"利用 CT 对肺癌患者进行放射基因组学研究的预后价值:系统综述。","authors":"Yixiao Jiang, Chuan Gao, Yilin Shao, Xinjing Lou, Meiqi Hua, Jiangnan Lin, Linyu Wu, Chen Gao","doi":"10.1186/s13244-024-01831-4","DOIUrl":null,"url":null,"abstract":"<p><p>This systematic review aimed to evaluate the effectiveness of combining radiomic and genomic models in predicting the long-term prognosis of patients with lung cancer and to contribute to the further exploration of radiomics. This study retrieved comprehensive literature from multiple databases, including radiomics and genomics, to study the prognosis of lung cancer. The model construction consisted of the radiomic and genomic methods. A comprehensive bias assessment was conducted, including risk assessment and model performance indicators. Ten studies between 2016 and 2023 were analyzed. Studies were mostly retrospective. Patient cohorts varied in size and characteristics, with the number of patients ranging from 79 to 315. The construction of the model involves various radiomic and genotic datasets, and most models show promising prediction performance with the area under the receiver operating characteristic curve (AUC) values ranging from 0.64 to 0.94 and the concordance index (C-index) values from 0.28 to 0.80. The combination model typically outperforms the single method model, indicating higher prediction accuracy and the highest AUC was 0.99. Combining radiomics and genomics in the prognostic model of lung cancer may improve the predictive performance. However, further research on standardized data and larger cohorts is needed to validate and integrate these findings into clinical practice. CRITICAL RELEVANCE STATEMENT: The combination of radiomics and genomics in the prognostic model of lung cancer improved prediction accuracy in most included studies. KEY POINTS: The combination of radiomics and genomics can improve model performance in most studies. The results of establishing prognosis models by different methods are discussed. The combination of radiomics and genomics may be helpful to provide better treatment for patients.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"15 1","pages":"259"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519241/pdf/","citationCount":"0","resultStr":"{\"title\":\"The prognostic value of radiogenomics using CT in patients with lung cancer: a systematic review.\",\"authors\":\"Yixiao Jiang, Chuan Gao, Yilin Shao, Xinjing Lou, Meiqi Hua, Jiangnan Lin, Linyu Wu, Chen Gao\",\"doi\":\"10.1186/s13244-024-01831-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This systematic review aimed to evaluate the effectiveness of combining radiomic and genomic models in predicting the long-term prognosis of patients with lung cancer and to contribute to the further exploration of radiomics. This study retrieved comprehensive literature from multiple databases, including radiomics and genomics, to study the prognosis of lung cancer. The model construction consisted of the radiomic and genomic methods. A comprehensive bias assessment was conducted, including risk assessment and model performance indicators. Ten studies between 2016 and 2023 were analyzed. Studies were mostly retrospective. Patient cohorts varied in size and characteristics, with the number of patients ranging from 79 to 315. The construction of the model involves various radiomic and genotic datasets, and most models show promising prediction performance with the area under the receiver operating characteristic curve (AUC) values ranging from 0.64 to 0.94 and the concordance index (C-index) values from 0.28 to 0.80. The combination model typically outperforms the single method model, indicating higher prediction accuracy and the highest AUC was 0.99. Combining radiomics and genomics in the prognostic model of lung cancer may improve the predictive performance. However, further research on standardized data and larger cohorts is needed to validate and integrate these findings into clinical practice. CRITICAL RELEVANCE STATEMENT: The combination of radiomics and genomics in the prognostic model of lung cancer improved prediction accuracy in most included studies. KEY POINTS: The combination of radiomics and genomics can improve model performance in most studies. The results of establishing prognosis models by different methods are discussed. The combination of radiomics and genomics may be helpful to provide better treatment for patients.</p>\",\"PeriodicalId\":13639,\"journal\":{\"name\":\"Insights into Imaging\",\"volume\":\"15 1\",\"pages\":\"259\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519241/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insights into Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13244-024-01831-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-024-01831-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本系统综述旨在评估结合放射组学和基因组学模型预测肺癌患者长期预后的有效性,并为进一步探索放射组学做出贡献。本研究从多个数据库(包括放射组学和基因组学)中检索了研究肺癌预后的全面文献。模型的构建包括放射组学和基因组学方法。进行了全面的偏倚评估,包括风险评估和模型性能指标。对2016年至2023年间的10项研究进行了分析。研究大多为回顾性研究。患者队列的规模和特征各不相同,患者人数从79人到315人不等。模型的构建涉及各种放射学和基因学数据集,大多数模型显示出良好的预测性能,接收者操作特征曲线下面积(AUC)值从0.64到0.94不等,一致性指数(C-index)值从0.28到0.80不等。组合模型通常优于单一方法模型,显示出更高的预测准确性,最高的 AUC 值为 0.99。在肺癌预后模型中结合放射组学和基因组学可提高预测性能。不过,还需要对标准化数据和更大的队列进行进一步研究,以验证这些发现并将其纳入临床实践。关键相关性声明:在大多数纳入的研究中,将放射组学和基因组学结合到肺癌预后模型中可提高预测准确性。关键要点:在大多数研究中,放射组学和基因组学的结合可提高模型的性能。讨论了通过不同方法建立预后模型的结果。放射组学和基因组学的结合可能有助于为患者提供更好的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The prognostic value of radiogenomics using CT in patients with lung cancer: a systematic review.

This systematic review aimed to evaluate the effectiveness of combining radiomic and genomic models in predicting the long-term prognosis of patients with lung cancer and to contribute to the further exploration of radiomics. This study retrieved comprehensive literature from multiple databases, including radiomics and genomics, to study the prognosis of lung cancer. The model construction consisted of the radiomic and genomic methods. A comprehensive bias assessment was conducted, including risk assessment and model performance indicators. Ten studies between 2016 and 2023 were analyzed. Studies were mostly retrospective. Patient cohorts varied in size and characteristics, with the number of patients ranging from 79 to 315. The construction of the model involves various radiomic and genotic datasets, and most models show promising prediction performance with the area under the receiver operating characteristic curve (AUC) values ranging from 0.64 to 0.94 and the concordance index (C-index) values from 0.28 to 0.80. The combination model typically outperforms the single method model, indicating higher prediction accuracy and the highest AUC was 0.99. Combining radiomics and genomics in the prognostic model of lung cancer may improve the predictive performance. However, further research on standardized data and larger cohorts is needed to validate and integrate these findings into clinical practice. CRITICAL RELEVANCE STATEMENT: The combination of radiomics and genomics in the prognostic model of lung cancer improved prediction accuracy in most included studies. KEY POINTS: The combination of radiomics and genomics can improve model performance in most studies. The results of establishing prognosis models by different methods are discussed. The combination of radiomics and genomics may be helpful to provide better treatment for patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insights into Imaging
Insights into Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
7.30
自引率
4.30%
发文量
182
审稿时长
13 weeks
期刊介绍: Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere! I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe. Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy. A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field. I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly. The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members. The journal went open access in 2012, which means that all articles published since then are freely available online.
期刊最新文献
Percutaneous cryoablation in soft tissue tumor management: an educational review. Computed tomography enterography-based deep learning radiomics to predict stratified healing in patients with Crohn's disease: a multicenter study. Constructing and exploring neuroimaging projects: a survey from clinical practice to scientific research. Estimated diagnostic performance of prostate MRI performed with clinical suspicion of prostate cancer. Multimodality deep learning radiomics predicts pathological response after neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1