缺乏 MHC-II 的小鼠对黑色素瘤的抑制:癌症免疫疗法的机制和意义。

IF 2.9 Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH ACS Chemical Health & Safety Pub Date : 2024-12-02 Epub Date: 2024-10-29 DOI:10.1084/jem.20240797
Hexin Shi, Dawson Medler, Jianhui Wang, Rachel Browning, Aijie Liu, Sara Schneider, Claudia Duran Bojorquez, Ashwani Kumar, Xiaohong Li, Jiexia Quan, Sara Ludwig, James J Moresco, Chao Xing, Eva Marie Y Moresco, Bruce Beutler
{"title":"缺乏 MHC-II 的小鼠对黑色素瘤的抑制:癌症免疫疗法的机制和意义。","authors":"Hexin Shi, Dawson Medler, Jianhui Wang, Rachel Browning, Aijie Liu, Sara Schneider, Claudia Duran Bojorquez, Ashwani Kumar, Xiaohong Li, Jiexia Quan, Sara Ludwig, James J Moresco, Chao Xing, Eva Marie Y Moresco, Bruce Beutler","doi":"10.1084/jem.20240797","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitors interfere with T cell exhaustion but often fail to cure or control cancer long-term in patients. Using a genetic screen in C57BL/6J mice, we discovered a mutation in host H2-Aa that caused strong immune-mediated resistance to mouse melanomas. H2-Aa encodes an MHC class II α chain, and its absence in C57BL/6J mice eliminates all MHC-II expression. H2-Aa deficiency, specifically in dendritic cells (DC), led to a quantitative increase in type 2 conventional DC (cDC2) and a decrease in cDC1. H2-Aa-deficient cDC2, but not cDC1, were essential for melanoma suppression and effectively cross-primed and recruited CD8 T cells into tumors. Lack of T regulatory cells, also observed in H2-Aa deficiency, contributed to melanoma suppression. Acute disruption of H2-Aa was therapeutic in melanoma-bearing mice, particularly when combined with checkpoint inhibition, which had no therapeutic effect by itself. Our findings suggest that inhibiting MHC-II may be an effective immunotherapeutic approach to enhance immune responses to cancer.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528124/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppression of melanoma by mice lacking MHC-II: Mechanisms and implications for cancer immunotherapy.\",\"authors\":\"Hexin Shi, Dawson Medler, Jianhui Wang, Rachel Browning, Aijie Liu, Sara Schneider, Claudia Duran Bojorquez, Ashwani Kumar, Xiaohong Li, Jiexia Quan, Sara Ludwig, James J Moresco, Chao Xing, Eva Marie Y Moresco, Bruce Beutler\",\"doi\":\"10.1084/jem.20240797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune checkpoint inhibitors interfere with T cell exhaustion but often fail to cure or control cancer long-term in patients. Using a genetic screen in C57BL/6J mice, we discovered a mutation in host H2-Aa that caused strong immune-mediated resistance to mouse melanomas. H2-Aa encodes an MHC class II α chain, and its absence in C57BL/6J mice eliminates all MHC-II expression. H2-Aa deficiency, specifically in dendritic cells (DC), led to a quantitative increase in type 2 conventional DC (cDC2) and a decrease in cDC1. H2-Aa-deficient cDC2, but not cDC1, were essential for melanoma suppression and effectively cross-primed and recruited CD8 T cells into tumors. Lack of T regulatory cells, also observed in H2-Aa deficiency, contributed to melanoma suppression. Acute disruption of H2-Aa was therapeutic in melanoma-bearing mice, particularly when combined with checkpoint inhibition, which had no therapeutic effect by itself. Our findings suggest that inhibiting MHC-II may be an effective immunotherapeutic approach to enhance immune responses to cancer.</p>\",\"PeriodicalId\":12,\"journal\":{\"name\":\"ACS Chemical Health & Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528124/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Health & Safety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20240797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20240797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

免疫检查点抑制剂会干扰T细胞衰竭,但往往无法治愈或长期控制患者的癌症。通过对C57BL/6J小鼠进行基因筛选,我们发现了宿主H2-Aa中的一种突变,这种突变会导致小鼠黑色素瘤产生强烈的免疫介导抗药性。H2-Aa编码MHC II类α链,在C57BL/6J小鼠中缺失H2-Aa会消除所有MHC-II的表达。缺乏H2-Aa,特别是树突状细胞(DC)缺乏H2-Aa,会导致2型常规DC(cDC2)数量增加,而cDC1数量减少。缺乏H2-Aa的cDC2(而非cDC1)对黑色素瘤的抑制至关重要,它们能有效地交叉灌注CD8 T细胞并将其招募到肿瘤中。在H2-Aa缺乏症中也观察到了T调节细胞的缺乏,这也是黑色素瘤抑制的原因之一。急性破坏H2-Aa对黑色素瘤小鼠有治疗作用,尤其是与检查点抑制结合使用时,而检查点抑制本身没有治疗作用。我们的研究结果表明,抑制 MHC-II 可能是增强癌症免疫反应的一种有效免疫治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Suppression of melanoma by mice lacking MHC-II: Mechanisms and implications for cancer immunotherapy.

Immune checkpoint inhibitors interfere with T cell exhaustion but often fail to cure or control cancer long-term in patients. Using a genetic screen in C57BL/6J mice, we discovered a mutation in host H2-Aa that caused strong immune-mediated resistance to mouse melanomas. H2-Aa encodes an MHC class II α chain, and its absence in C57BL/6J mice eliminates all MHC-II expression. H2-Aa deficiency, specifically in dendritic cells (DC), led to a quantitative increase in type 2 conventional DC (cDC2) and a decrease in cDC1. H2-Aa-deficient cDC2, but not cDC1, were essential for melanoma suppression and effectively cross-primed and recruited CD8 T cells into tumors. Lack of T regulatory cells, also observed in H2-Aa deficiency, contributed to melanoma suppression. Acute disruption of H2-Aa was therapeutic in melanoma-bearing mice, particularly when combined with checkpoint inhibition, which had no therapeutic effect by itself. Our findings suggest that inhibiting MHC-II may be an effective immunotherapeutic approach to enhance immune responses to cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Health & Safety
ACS Chemical Health & Safety PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
3.10
自引率
20.00%
发文量
63
期刊介绍: The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.
期刊最新文献
Terez Shea-Donohue: Optimism helps, and confidence in your work is critical. MAIT cells: Conserved watchers on the wall. Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. Basophils: Regulators of lung inflammation over space and time. Suppression of melanoma by mice lacking MHC-II: Mechanisms and implications for cancer immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1