{"title":"掺硼碳纳米点的激发波长和时间相关性彩色可调室温磷光。","authors":"Bilipang Mahilary, Khemnath Patir, Sanjay Basumatary","doi":"10.1007/s10895-024-04007-x","DOIUrl":null,"url":null,"abstract":"<p><p>Developing metal free room temperature phosphorescence (RTP) materials have received tremendous attention due its potential application in various fields such as sensing, optoelectronics and anticounterfeiting. Herein, we have synthesized an excitation wavelength and time dependent phosphorescent boron doped carbon nanodots (BCNDs) by thermal treatment of ethanolamine and boric acid at 240 °C, where boric acid act as both doping and host agents. The obtained BCNDs display blue to orange fluorescence in both aqueous medium and solid state. In addition, the BCNDs display tunable orange-yellow-green phosphorescence in solid state under UV and visible light, lasting upto 10 s, visible to naked eye. The boron and nitrogen doping regulates the band gap of the BCNDs, resulting the phosphorescence colour tunability. The average phosphorescence lifetime and quantum yield of BCNDs are found to be 1.27 s and 8.61% respectively. Based on the optical properties, the BCNDs are applied as security ink in information encryption and security marking. Hence, this work can promote the development of metal free phosphorescent carbon based materials which may find application in various emerging fields.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excitation wavelength and time dependent colour tunable room temperature phosphorescence from boron doped carbon nanodots.\",\"authors\":\"Bilipang Mahilary, Khemnath Patir, Sanjay Basumatary\",\"doi\":\"10.1007/s10895-024-04007-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing metal free room temperature phosphorescence (RTP) materials have received tremendous attention due its potential application in various fields such as sensing, optoelectronics and anticounterfeiting. Herein, we have synthesized an excitation wavelength and time dependent phosphorescent boron doped carbon nanodots (BCNDs) by thermal treatment of ethanolamine and boric acid at 240 °C, where boric acid act as both doping and host agents. The obtained BCNDs display blue to orange fluorescence in both aqueous medium and solid state. In addition, the BCNDs display tunable orange-yellow-green phosphorescence in solid state under UV and visible light, lasting upto 10 s, visible to naked eye. The boron and nitrogen doping regulates the band gap of the BCNDs, resulting the phosphorescence colour tunability. The average phosphorescence lifetime and quantum yield of BCNDs are found to be 1.27 s and 8.61% respectively. Based on the optical properties, the BCNDs are applied as security ink in information encryption and security marking. Hence, this work can promote the development of metal free phosphorescent carbon based materials which may find application in various emerging fields.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-04007-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-04007-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Excitation wavelength and time dependent colour tunable room temperature phosphorescence from boron doped carbon nanodots.
Developing metal free room temperature phosphorescence (RTP) materials have received tremendous attention due its potential application in various fields such as sensing, optoelectronics and anticounterfeiting. Herein, we have synthesized an excitation wavelength and time dependent phosphorescent boron doped carbon nanodots (BCNDs) by thermal treatment of ethanolamine and boric acid at 240 °C, where boric acid act as both doping and host agents. The obtained BCNDs display blue to orange fluorescence in both aqueous medium and solid state. In addition, the BCNDs display tunable orange-yellow-green phosphorescence in solid state under UV and visible light, lasting upto 10 s, visible to naked eye. The boron and nitrogen doping regulates the band gap of the BCNDs, resulting the phosphorescence colour tunability. The average phosphorescence lifetime and quantum yield of BCNDs are found to be 1.27 s and 8.61% respectively. Based on the optical properties, the BCNDs are applied as security ink in information encryption and security marking. Hence, this work can promote the development of metal free phosphorescent carbon based materials which may find application in various emerging fields.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.