Luke Guerrieri, Sarah Hall, Brad M Luther, Amber T Krummel
{"title":"碳酸乙烯酯中的相干振动动力学特征。","authors":"Luke Guerrieri, Sarah Hall, Brad M Luther, Amber T Krummel","doi":"10.1063/5.0216515","DOIUrl":null,"url":null,"abstract":"<p><p>Despite having practical applications in battery technology and serving as a model system for Fermi resonance coupling, ethylene carbonate (EC) receives little direct attention as a vibrational probe in nonlinear vibrational spectroscopy experiments. EC contains a Fermi resonance that is well-characterized in the linear spectrum, and the environmental sensitivity of its Fermi resonance peaks could make it a good molecular probe for two-dimensional infrared spectroscopy (2DIR) experiments. As a model system, we investigate the linear and 2DIR vibrational spectrum of the carbonyl stretching region of ethylene carbonate in tetrahydrofuran. The 2DIR spectrum reveals peak dynamics that evolve coherently. We characterize these dynamics in the context of Redfield theory and find evidence that EC dynamics proceed through coherent pathways, including singular coherence transfer pathways that have not been widely observed in other studies. We find that coherent contributions play a significant role in the observed dynamics of cross-peaks in the 2DIR spectrum, which must be accounted for to extract accurate measurements of early waiting time dynamics.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signatures of coherent vibrational dynamics in ethylene carbonate.\",\"authors\":\"Luke Guerrieri, Sarah Hall, Brad M Luther, Amber T Krummel\",\"doi\":\"10.1063/5.0216515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite having practical applications in battery technology and serving as a model system for Fermi resonance coupling, ethylene carbonate (EC) receives little direct attention as a vibrational probe in nonlinear vibrational spectroscopy experiments. EC contains a Fermi resonance that is well-characterized in the linear spectrum, and the environmental sensitivity of its Fermi resonance peaks could make it a good molecular probe for two-dimensional infrared spectroscopy (2DIR) experiments. As a model system, we investigate the linear and 2DIR vibrational spectrum of the carbonyl stretching region of ethylene carbonate in tetrahydrofuran. The 2DIR spectrum reveals peak dynamics that evolve coherently. We characterize these dynamics in the context of Redfield theory and find evidence that EC dynamics proceed through coherent pathways, including singular coherence transfer pathways that have not been widely observed in other studies. We find that coherent contributions play a significant role in the observed dynamics of cross-peaks in the 2DIR spectrum, which must be accounted for to extract accurate measurements of early waiting time dynamics.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0216515\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0216515","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Signatures of coherent vibrational dynamics in ethylene carbonate.
Despite having practical applications in battery technology and serving as a model system for Fermi resonance coupling, ethylene carbonate (EC) receives little direct attention as a vibrational probe in nonlinear vibrational spectroscopy experiments. EC contains a Fermi resonance that is well-characterized in the linear spectrum, and the environmental sensitivity of its Fermi resonance peaks could make it a good molecular probe for two-dimensional infrared spectroscopy (2DIR) experiments. As a model system, we investigate the linear and 2DIR vibrational spectrum of the carbonyl stretching region of ethylene carbonate in tetrahydrofuran. The 2DIR spectrum reveals peak dynamics that evolve coherently. We characterize these dynamics in the context of Redfield theory and find evidence that EC dynamics proceed through coherent pathways, including singular coherence transfer pathways that have not been widely observed in other studies. We find that coherent contributions play a significant role in the observed dynamics of cross-peaks in the 2DIR spectrum, which must be accounted for to extract accurate measurements of early waiting time dynamics.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.