与核磁共振成像和 CT 兼容的非对称双层水凝胶电极,用于基于脑电图的大脑活动监测。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-10-29 DOI:10.1038/s41378-024-00805-2
Guoqiang Ren, Mingxuan Zhang, Liping Zhuang, Lianhui Li, Shunying Zhao, Jinxiu Guo, Yinchao Zhao, Zhaoxiang Peng, Jiangfan Lian, Botao Liu, Jingyun Ma, Xiaodong Hu, Zhewei Zhang, Ting Zhang, Qifeng Lu, Mingming Hao
{"title":"与核磁共振成像和 CT 兼容的非对称双层水凝胶电极,用于基于脑电图的大脑活动监测。","authors":"Guoqiang Ren, Mingxuan Zhang, Liping Zhuang, Lianhui Li, Shunying Zhao, Jinxiu Guo, Yinchao Zhao, Zhaoxiang Peng, Jiangfan Lian, Botao Liu, Jingyun Ma, Xiaodong Hu, Zhewei Zhang, Ting Zhang, Qifeng Lu, Mingming Hao","doi":"10.1038/s41378-024-00805-2","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of multi-dimensional brain activity with high temporal and spatial resolution is of great significance in the diagnosis of neurological disease and the study of brain science. Although the integration of electroencephalogram (EEG) with magnetic resonance imaging (MRI) and computed tomography (CT) provides a potential solution to achieve a brain-functional image with high spatiotemporal resolution, the critical issues of interface stability and magnetic compatibility remain challenging. Therefore, in this research, we proposed a conductive hydrogel EEG electrode with an asymmetrical bilayer structure, which shows the potential to overcome the challenges. Benefiting from the bilayer structure with different moduli, the hydrogel electrode exhibits high biological and mechanical compatibility with the heterogeneous brain-electrode interface. As a result, the impedance can be reduced compared with conventional metal electrodes. In addition, the hydrogel-based ionic conductive electrodes, which are free from metal conductors, are compatible with MRI and CT. Therefore, they can obtain high spatiotemporal resolution multi-dimensional brain information in clinical settings. The research outcome provides a new approach for establishing a platform for early diagnosis of brain diseases and the study of brain science.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"156"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519644/pdf/","citationCount":"0","resultStr":"{\"title\":\"MRI and CT compatible asymmetric bilayer hydrogel electrodes for EEG-based brain activity monitoring.\",\"authors\":\"Guoqiang Ren, Mingxuan Zhang, Liping Zhuang, Lianhui Li, Shunying Zhao, Jinxiu Guo, Yinchao Zhao, Zhaoxiang Peng, Jiangfan Lian, Botao Liu, Jingyun Ma, Xiaodong Hu, Zhewei Zhang, Ting Zhang, Qifeng Lu, Mingming Hao\",\"doi\":\"10.1038/s41378-024-00805-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exploration of multi-dimensional brain activity with high temporal and spatial resolution is of great significance in the diagnosis of neurological disease and the study of brain science. Although the integration of electroencephalogram (EEG) with magnetic resonance imaging (MRI) and computed tomography (CT) provides a potential solution to achieve a brain-functional image with high spatiotemporal resolution, the critical issues of interface stability and magnetic compatibility remain challenging. Therefore, in this research, we proposed a conductive hydrogel EEG electrode with an asymmetrical bilayer structure, which shows the potential to overcome the challenges. Benefiting from the bilayer structure with different moduli, the hydrogel electrode exhibits high biological and mechanical compatibility with the heterogeneous brain-electrode interface. As a result, the impedance can be reduced compared with conventional metal electrodes. In addition, the hydrogel-based ionic conductive electrodes, which are free from metal conductors, are compatible with MRI and CT. Therefore, they can obtain high spatiotemporal resolution multi-dimensional brain information in clinical settings. The research outcome provides a new approach for establishing a platform for early diagnosis of brain diseases and the study of brain science.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"156\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00805-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00805-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

探索具有高时空分辨率的多维大脑活动对神经疾病诊断和脑科学研究具有重要意义。虽然脑电图(EEG)与磁共振成像(MRI)和计算机断层扫描(CT)的整合为实现高时空分辨率的脑功能图像提供了一种潜在的解决方案,但界面稳定性和磁兼容性等关键问题仍然具有挑战性。因此,在这项研究中,我们提出了一种具有非对称双层结构的导电水凝胶脑电图电极,它显示出克服这些挑战的潜力。得益于具有不同模量的双层结构,该水凝胶电极与异质脑电极界面具有很高的生物和机械兼容性。因此,与传统金属电极相比,阻抗可以降低。此外,不含金属导体的水凝胶离子导电电极与核磁共振成像和 CT 兼容。因此,它们可以在临床环境中获得高时空分辨率的多维脑信息。该研究成果为建立脑疾病早期诊断和脑科学研究平台提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI and CT compatible asymmetric bilayer hydrogel electrodes for EEG-based brain activity monitoring.

The exploration of multi-dimensional brain activity with high temporal and spatial resolution is of great significance in the diagnosis of neurological disease and the study of brain science. Although the integration of electroencephalogram (EEG) with magnetic resonance imaging (MRI) and computed tomography (CT) provides a potential solution to achieve a brain-functional image with high spatiotemporal resolution, the critical issues of interface stability and magnetic compatibility remain challenging. Therefore, in this research, we proposed a conductive hydrogel EEG electrode with an asymmetrical bilayer structure, which shows the potential to overcome the challenges. Benefiting from the bilayer structure with different moduli, the hydrogel electrode exhibits high biological and mechanical compatibility with the heterogeneous brain-electrode interface. As a result, the impedance can be reduced compared with conventional metal electrodes. In addition, the hydrogel-based ionic conductive electrodes, which are free from metal conductors, are compatible with MRI and CT. Therefore, they can obtain high spatiotemporal resolution multi-dimensional brain information in clinical settings. The research outcome provides a new approach for establishing a platform for early diagnosis of brain diseases and the study of brain science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
Bifunctional nanoprobe for simultaneous detection of intracellular reactive oxygen species and temperature in single cells. Sound innovations for biofabrication and tissue engineering. A novel gyroscope based on the slow surface acoustic wave in a phononic metamaterial. Defect-insensitive cylindrical surface lattice resonance array and its batch replication for enhanced immunoassay. Biomimetic hair-assisted GaN optical devices for bidirectional airflow detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1