MYC 的转录调控:一种新出现的模式。

IF 6.9 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Oncogene Pub Date : 2024-10-28 DOI:10.1038/s41388-024-03174-2
Simon T Jakobsen, Rasmus Siersbæk
{"title":"MYC 的转录调控:一种新出现的模式。","authors":"Simon T Jakobsen, Rasmus Siersbæk","doi":"10.1038/s41388-024-03174-2","DOIUrl":null,"url":null,"abstract":"<p><p>The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptional regulation by MYC: an emerging new model.\",\"authors\":\"Simon T Jakobsen, Rasmus Siersbæk\",\"doi\":\"10.1038/s41388-024-03174-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.</p>\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41388-024-03174-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03174-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转录因子 MYC 在细胞周期、细胞凋亡和新陈代谢等细胞过程的基本基因转录调控中发挥着关键作用,这一点早已得到公认。MYC 活性失调与多种疾病有关,其中最明显的是癌症,因为 MYC 在癌症中会导致细胞不受控制地增殖和生长。尽管 MYC 在癌症生物学中扮演着重要角色,但由于其高度紊乱的蛋白质结构,以 MYC 为靶点进行治疗一直是一项挑战。因此,最近的研究工作主要集中在确定 MYC 功能的转录机制,以确定干预的替代策略。本综述总结了我们对 MYC 如何在癌症中协调与环境有关和无关的基因调控活动的最新理解进展。基于对增强子中 MYC 基因调控功能的最新认识,我们提出了基因特异性亲和力模型的扩展。在这一修正模型中,MYC 增强子的活性驱动着特定环境下的基因程序,这些程序有别于由 MYC 启动子结合驱动的普遍激活的核心 MYC 靶基因集。癌症中 MYC 增强子活性的增加,以及与启动子相比 MYC 在这些区域的独特功能,可能为设计选择性针对癌细胞中 MYC 增强子活性的治疗方法提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transcriptional regulation by MYC: an emerging new model.

The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncogene
Oncogene 医学-生化与分子生物学
CiteScore
15.30
自引率
1.20%
发文量
404
审稿时长
1 months
期刊介绍: Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge. Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.
期刊最新文献
Cooperative blockade of FLT3 and ALK synergistically suppresses growth of osteosarcoma. EZH2 inhibition sensitizes MYC-high medulloblastoma cancers to PARP inhibition by regulating NUPR1-mediated DNA repair. Retraction Note: SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. PD-L1 promotes tumor metastasis by regulating the infiltration of FGFBP2(+)Tm cells in colorectal cancer. LINC00882, transcriptionally activated by CEBP-β and post-transcriptionally stabilized by METTL14-mediated m6A modification, exerts tumorigenesis by promoting PABPC1-mediated stabilization of ELK3 mRNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1