Mcadet:基于多重对应分析和群落检测的精细分辨率单细胞RNA-seq数据特征选择方法

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS PLoS Computational Biology Pub Date : 2024-10-28 eCollection Date: 2024-10-01 DOI:10.1371/journal.pcbi.1012560
Saishi Cui, Sina Nassiri, Issa Zakeri
{"title":"Mcadet:基于多重对应分析和群落检测的精细分辨率单细胞RNA-seq数据特征选择方法","authors":"Saishi Cui, Sina Nassiri, Issa Zakeri","doi":"10.1371/journal.pcbi.1012560","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) data analysis faces numerous challenges, including high sparsity, a high-dimensional feature space, and biological noise. These challenges hinder downstream analysis, necessitating the use of feature selection methods to identify informative genes, and reduce data dimensionality. However, existing methods for selecting highly variable genes (HVGs) exhibit limited overlap and inconsistent clustering performance across benchmark datasets. Moreover, these methods often struggle to accurately select HVGs from fine-resolution scRNA-seq datasets and minority cell types, which are more difficult to distinguish, raising concerns about the reliability of their results. To overcome these limitations, we propose a novel feature selection framework for scRNA-seq data called Mcadet. Mcadet integrates Multiple Correspondence Analysis (MCA), graph-based community detection, and a novel statistical testing approach. To assess the effectiveness of Mcadet, we conducted extensive evaluations using both simulated and real-world data, employing unbiased metrics for comparison. Our results demonstrate the superior performance of Mcadet in the selection of HVGs in scenarios involving fine-resolution scRNA-seq datasets and datasets containing minority cell populations. Overall, we demonstrate that Mcadet enhances the reliability of selected HVGs, although the impact of HVG selection on various downstream analyses varies and needs to be further investigated.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mcadet: A feature selection method for fine-resolution single-cell RNA-seq data based on multiple correspondence analysis and community detection.\",\"authors\":\"Saishi Cui, Sina Nassiri, Issa Zakeri\",\"doi\":\"10.1371/journal.pcbi.1012560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing (scRNA-seq) data analysis faces numerous challenges, including high sparsity, a high-dimensional feature space, and biological noise. These challenges hinder downstream analysis, necessitating the use of feature selection methods to identify informative genes, and reduce data dimensionality. However, existing methods for selecting highly variable genes (HVGs) exhibit limited overlap and inconsistent clustering performance across benchmark datasets. Moreover, these methods often struggle to accurately select HVGs from fine-resolution scRNA-seq datasets and minority cell types, which are more difficult to distinguish, raising concerns about the reliability of their results. To overcome these limitations, we propose a novel feature selection framework for scRNA-seq data called Mcadet. Mcadet integrates Multiple Correspondence Analysis (MCA), graph-based community detection, and a novel statistical testing approach. To assess the effectiveness of Mcadet, we conducted extensive evaluations using both simulated and real-world data, employing unbiased metrics for comparison. Our results demonstrate the superior performance of Mcadet in the selection of HVGs in scenarios involving fine-resolution scRNA-seq datasets and datasets containing minority cell populations. Overall, we demonstrate that Mcadet enhances the reliability of selected HVGs, although the impact of HVG selection on various downstream analyses varies and needs to be further investigated.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012560\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012560","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

单细胞 RNA 测序(scRNA-seq)数据分析面临诸多挑战,包括高稀疏性、高维特征空间和生物噪声。这些挑战阻碍了下游分析,因此有必要使用特征选择方法来识别信息基因并降低数据维度。然而,现有的高变异基因(HVGs)选择方法在基准数据集上表现出有限的重叠性和不一致的聚类性能。此外,这些方法往往难以从精细分辨率的 scRNA-seq 数据集和更难区分的少数细胞类型中准确选择 HVGs,从而引发了对其结果可靠性的担忧。为了克服这些局限性,我们提出了一种用于 scRNA-seq 数据的新型特征选择框架,称为 Mcadet。Mcadet 整合了多重对应分析(MCA)、基于图的群落检测和新型统计测试方法。为了评估 Mcadet 的有效性,我们使用模拟数据和真实世界数据进行了广泛的评估,并采用无偏指标进行比较。结果表明,在涉及精细分辨率 scRNA-seq 数据集和包含少数细胞群的数据集的情况下,Mcadet 在选择 HVGs 方面表现出色。总之,我们证明了 Mcadet 提高了所选 HVG 的可靠性,尽管 HVG 选择对各种下游分析的影响各不相同,还需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mcadet: A feature selection method for fine-resolution single-cell RNA-seq data based on multiple correspondence analysis and community detection.

Single-cell RNA sequencing (scRNA-seq) data analysis faces numerous challenges, including high sparsity, a high-dimensional feature space, and biological noise. These challenges hinder downstream analysis, necessitating the use of feature selection methods to identify informative genes, and reduce data dimensionality. However, existing methods for selecting highly variable genes (HVGs) exhibit limited overlap and inconsistent clustering performance across benchmark datasets. Moreover, these methods often struggle to accurately select HVGs from fine-resolution scRNA-seq datasets and minority cell types, which are more difficult to distinguish, raising concerns about the reliability of their results. To overcome these limitations, we propose a novel feature selection framework for scRNA-seq data called Mcadet. Mcadet integrates Multiple Correspondence Analysis (MCA), graph-based community detection, and a novel statistical testing approach. To assess the effectiveness of Mcadet, we conducted extensive evaluations using both simulated and real-world data, employing unbiased metrics for comparison. Our results demonstrate the superior performance of Mcadet in the selection of HVGs in scenarios involving fine-resolution scRNA-seq datasets and datasets containing minority cell populations. Overall, we demonstrate that Mcadet enhances the reliability of selected HVGs, although the impact of HVG selection on various downstream analyses varies and needs to be further investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
A computational analysis of the oncogenic and anti-tumor immunity role of P4HA3 in human cancers. Assessing the effect of model specification and prior sensitivity on Bayesian tests of temporal signal. During haptic communication, the central nervous system compensates distinctly for delay and noise. Structure-aware annotation of leucine-rich repeat domains. A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1