{"title":"Mcadet:基于多重对应分析和群落检测的精细分辨率单细胞RNA-seq数据特征选择方法","authors":"Saishi Cui, Sina Nassiri, Issa Zakeri","doi":"10.1371/journal.pcbi.1012560","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) data analysis faces numerous challenges, including high sparsity, a high-dimensional feature space, and biological noise. These challenges hinder downstream analysis, necessitating the use of feature selection methods to identify informative genes, and reduce data dimensionality. However, existing methods for selecting highly variable genes (HVGs) exhibit limited overlap and inconsistent clustering performance across benchmark datasets. Moreover, these methods often struggle to accurately select HVGs from fine-resolution scRNA-seq datasets and minority cell types, which are more difficult to distinguish, raising concerns about the reliability of their results. To overcome these limitations, we propose a novel feature selection framework for scRNA-seq data called Mcadet. Mcadet integrates Multiple Correspondence Analysis (MCA), graph-based community detection, and a novel statistical testing approach. To assess the effectiveness of Mcadet, we conducted extensive evaluations using both simulated and real-world data, employing unbiased metrics for comparison. Our results demonstrate the superior performance of Mcadet in the selection of HVGs in scenarios involving fine-resolution scRNA-seq datasets and datasets containing minority cell populations. Overall, we demonstrate that Mcadet enhances the reliability of selected HVGs, although the impact of HVG selection on various downstream analyses varies and needs to be further investigated.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mcadet: A feature selection method for fine-resolution single-cell RNA-seq data based on multiple correspondence analysis and community detection.\",\"authors\":\"Saishi Cui, Sina Nassiri, Issa Zakeri\",\"doi\":\"10.1371/journal.pcbi.1012560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing (scRNA-seq) data analysis faces numerous challenges, including high sparsity, a high-dimensional feature space, and biological noise. These challenges hinder downstream analysis, necessitating the use of feature selection methods to identify informative genes, and reduce data dimensionality. However, existing methods for selecting highly variable genes (HVGs) exhibit limited overlap and inconsistent clustering performance across benchmark datasets. Moreover, these methods often struggle to accurately select HVGs from fine-resolution scRNA-seq datasets and minority cell types, which are more difficult to distinguish, raising concerns about the reliability of their results. To overcome these limitations, we propose a novel feature selection framework for scRNA-seq data called Mcadet. Mcadet integrates Multiple Correspondence Analysis (MCA), graph-based community detection, and a novel statistical testing approach. To assess the effectiveness of Mcadet, we conducted extensive evaluations using both simulated and real-world data, employing unbiased metrics for comparison. Our results demonstrate the superior performance of Mcadet in the selection of HVGs in scenarios involving fine-resolution scRNA-seq datasets and datasets containing minority cell populations. Overall, we demonstrate that Mcadet enhances the reliability of selected HVGs, although the impact of HVG selection on various downstream analyses varies and needs to be further investigated.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012560\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012560","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Mcadet: A feature selection method for fine-resolution single-cell RNA-seq data based on multiple correspondence analysis and community detection.
Single-cell RNA sequencing (scRNA-seq) data analysis faces numerous challenges, including high sparsity, a high-dimensional feature space, and biological noise. These challenges hinder downstream analysis, necessitating the use of feature selection methods to identify informative genes, and reduce data dimensionality. However, existing methods for selecting highly variable genes (HVGs) exhibit limited overlap and inconsistent clustering performance across benchmark datasets. Moreover, these methods often struggle to accurately select HVGs from fine-resolution scRNA-seq datasets and minority cell types, which are more difficult to distinguish, raising concerns about the reliability of their results. To overcome these limitations, we propose a novel feature selection framework for scRNA-seq data called Mcadet. Mcadet integrates Multiple Correspondence Analysis (MCA), graph-based community detection, and a novel statistical testing approach. To assess the effectiveness of Mcadet, we conducted extensive evaluations using both simulated and real-world data, employing unbiased metrics for comparison. Our results demonstrate the superior performance of Mcadet in the selection of HVGs in scenarios involving fine-resolution scRNA-seq datasets and datasets containing minority cell populations. Overall, we demonstrate that Mcadet enhances the reliability of selected HVGs, although the impact of HVG selection on various downstream analyses varies and needs to be further investigated.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.