Miranda E Arnold, Cecelia E Harber, Lauren A Beugelsdyk, Ellie B Decker Ramirez, Grace B Phillips, Jesse R Schank
{"title":"内侧前额叶皮层的促皮质素释放激素受体 1 介导了厌恶性酒精摄入。","authors":"Miranda E Arnold, Cecelia E Harber, Lauren A Beugelsdyk, Ellie B Decker Ramirez, Grace B Phillips, Jesse R Schank","doi":"10.1007/s00213-024-06707-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>Alcohol consumption despite negative consequences is a core symptom of Alcohol Use Disorder. In animal models, this is studied by pairing aversive stimuli with alcohol access, and continuation of drinking under these conditions is known as aversion resistance. Previously, we found that female mice are more aversion resistant than males. Corticotropin releasing hormone (Crh) and the Crh receptor 1 (Crhr1) regulate stress-induced reinstatement, alcohol dependence, and binge-like drinking. However, the role of the Crh system in aversion resistance has not been assessed.</p><p><strong>Objectives: </strong>We aimed to identify sex differences in the Crh system during quinine-adulterated alcohol intake.</p><p><strong>Methods: </strong>We used two-bottle choice and adulterated the alcohol solution with quinine. Next, we measured Crh and Crhr1 levels in brain tissue using real-time polymerase chain reaction (RT-qPCR) and RNAscope in situ hybridization. We then infused a Crhr1 antagonist into the medial prefrontal cortex (mPFC) prior to quinine-alcohol intake.</p><p><strong>Results: </strong>After quinine-alcohol consumption, females exhibited increased mPFC Crhr1 mRNA levels as measured by RT-qPCR. This was confirmed with greater anatomical specificity using RNAscope, with females exhibiting an increased number of Crhr1 + cells in the dorsomedial PFC and the ventromedial PFC. mPFC Crhr1 antagonist treatment reduced quinine-alcohol consumption in females but did not impact consumption in males. Quinine-free alcohol intake was unaffected by Crhr1 antagonist treatment.</p><p><strong>Conclusions: </strong>Our findings suggest that Crhr1 in mPFC plays a role in aversion resistant alcohol intake in females. Future experiments will examine the sources of Crh innervation to the mPFC and their distinct roles in alcohol seeking.</p>","PeriodicalId":20783,"journal":{"name":"Psychopharmacology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corticotropin releasing hormone receptor 1 in the medial prefrontal cortex mediates aversion resistant alcohol intake.\",\"authors\":\"Miranda E Arnold, Cecelia E Harber, Lauren A Beugelsdyk, Ellie B Decker Ramirez, Grace B Phillips, Jesse R Schank\",\"doi\":\"10.1007/s00213-024-06707-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Rationale: </strong>Alcohol consumption despite negative consequences is a core symptom of Alcohol Use Disorder. In animal models, this is studied by pairing aversive stimuli with alcohol access, and continuation of drinking under these conditions is known as aversion resistance. Previously, we found that female mice are more aversion resistant than males. Corticotropin releasing hormone (Crh) and the Crh receptor 1 (Crhr1) regulate stress-induced reinstatement, alcohol dependence, and binge-like drinking. However, the role of the Crh system in aversion resistance has not been assessed.</p><p><strong>Objectives: </strong>We aimed to identify sex differences in the Crh system during quinine-adulterated alcohol intake.</p><p><strong>Methods: </strong>We used two-bottle choice and adulterated the alcohol solution with quinine. Next, we measured Crh and Crhr1 levels in brain tissue using real-time polymerase chain reaction (RT-qPCR) and RNAscope in situ hybridization. We then infused a Crhr1 antagonist into the medial prefrontal cortex (mPFC) prior to quinine-alcohol intake.</p><p><strong>Results: </strong>After quinine-alcohol consumption, females exhibited increased mPFC Crhr1 mRNA levels as measured by RT-qPCR. This was confirmed with greater anatomical specificity using RNAscope, with females exhibiting an increased number of Crhr1 + cells in the dorsomedial PFC and the ventromedial PFC. mPFC Crhr1 antagonist treatment reduced quinine-alcohol consumption in females but did not impact consumption in males. Quinine-free alcohol intake was unaffected by Crhr1 antagonist treatment.</p><p><strong>Conclusions: </strong>Our findings suggest that Crhr1 in mPFC plays a role in aversion resistant alcohol intake in females. Future experiments will examine the sources of Crh innervation to the mPFC and their distinct roles in alcohol seeking.</p>\",\"PeriodicalId\":20783,\"journal\":{\"name\":\"Psychopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00213-024-06707-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00213-024-06707-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Corticotropin releasing hormone receptor 1 in the medial prefrontal cortex mediates aversion resistant alcohol intake.
Rationale: Alcohol consumption despite negative consequences is a core symptom of Alcohol Use Disorder. In animal models, this is studied by pairing aversive stimuli with alcohol access, and continuation of drinking under these conditions is known as aversion resistance. Previously, we found that female mice are more aversion resistant than males. Corticotropin releasing hormone (Crh) and the Crh receptor 1 (Crhr1) regulate stress-induced reinstatement, alcohol dependence, and binge-like drinking. However, the role of the Crh system in aversion resistance has not been assessed.
Objectives: We aimed to identify sex differences in the Crh system during quinine-adulterated alcohol intake.
Methods: We used two-bottle choice and adulterated the alcohol solution with quinine. Next, we measured Crh and Crhr1 levels in brain tissue using real-time polymerase chain reaction (RT-qPCR) and RNAscope in situ hybridization. We then infused a Crhr1 antagonist into the medial prefrontal cortex (mPFC) prior to quinine-alcohol intake.
Results: After quinine-alcohol consumption, females exhibited increased mPFC Crhr1 mRNA levels as measured by RT-qPCR. This was confirmed with greater anatomical specificity using RNAscope, with females exhibiting an increased number of Crhr1 + cells in the dorsomedial PFC and the ventromedial PFC. mPFC Crhr1 antagonist treatment reduced quinine-alcohol consumption in females but did not impact consumption in males. Quinine-free alcohol intake was unaffected by Crhr1 antagonist treatment.
Conclusions: Our findings suggest that Crhr1 in mPFC plays a role in aversion resistant alcohol intake in females. Future experiments will examine the sources of Crh innervation to the mPFC and their distinct roles in alcohol seeking.
期刊介绍:
Official Journal of the European Behavioural Pharmacology Society (EBPS)
Psychopharmacology is an international journal that covers the broad topic of elucidating mechanisms by which drugs affect behavior. The scope of the journal encompasses the following fields:
Human Psychopharmacology: Experimental
This section includes manuscripts describing the effects of drugs on mood, behavior, cognition and physiology in humans. The journal encourages submissions that involve brain imaging, genetics, neuroendocrinology, and developmental topics. Usually manuscripts in this section describe studies conducted under controlled conditions, but occasionally descriptive or observational studies are also considered.
Human Psychopharmacology: Clinical and Translational
This section comprises studies addressing the broad intersection of drugs and psychiatric illness. This includes not only clinical trials and studies of drug usage and metabolism, drug surveillance, and pharmacoepidemiology, but also work utilizing the entire range of clinically relevant methodologies, including neuroimaging, pharmacogenetics, cognitive science, biomarkers, and others. Work directed toward the translation of preclinical to clinical knowledge is especially encouraged. The key feature of submissions to this section is that they involve a focus on clinical aspects.
Preclinical psychopharmacology: Behavioral and Neural
This section considers reports on the effects of compounds with defined chemical structures on any aspect of behavior, in particular when correlated with neurochemical effects, in species other than humans. Manuscripts containing neuroscientific techniques in combination with behavior are welcome. We encourage reports of studies that provide insight into the mechanisms of drug action, at the behavioral and molecular levels.
Preclinical Psychopharmacology: Translational
This section considers manuscripts that enhance the confidence in a central mechanism that could be of therapeutic value for psychiatric or neurological patients, using disease-relevant preclinical models and tests, or that report on preclinical manipulations and challenges that have the potential to be translated to the clinic. Studies aiming at the refinement of preclinical models based upon clinical findings (back-translation) will also be considered. The journal particularly encourages submissions that integrate measures of target tissue exposure, activity on the molecular target and/or modulation of the targeted biochemical pathways.
Preclinical Psychopharmacology: Molecular, Genetic and Epigenetic
This section focuses on the molecular and cellular actions of neuropharmacological agents / drugs, and the identification / validation of drug targets affecting the CNS in health and disease. We particularly encourage studies that provide insight into the mechanisms of drug action at the molecular level. Manuscripts containing evidence for genetic or epigenetic effects on neurochemistry or behavior are welcome.