Fiza Noor Zahara, J. Keshavayya, Chethan Krishnamurthy, K. M. Pallavi
{"title":"橙色发光噻唑-吡啶酮偶氮荧光团及其潜在指纹的活细胞成像研究、多巴胺检测的计算、电化学传感。","authors":"Fiza Noor Zahara, J. Keshavayya, Chethan Krishnamurthy, K. M. Pallavi","doi":"10.1002/bio.70003","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The fluorescent materials have sparked a lot of research interests due to their unique electronic, optical and chemical characteristics. Here, we are intended to present a simple and facile synthesis of novel orange emitting thiazole-pyridone fluorescent tag (TPFT) by a simple diazo coupling reaction and the structural elucidation was carried out by IR, NMR (<sup>1</sup>H and <sup>13</sup>C), UV–Vis, photoluminescence and HR-MS spectrometry. The solvatochromic behaviour of the TPFT offered crucial information about the formation of hydrazone and azo tautomeric forms. The DFT simulations are computed to calculate HOMO-LUMO energy gap (3.028 eV) of TPFT along with MEP and RDG analyses. Comprehensive LFP visualization is revealed under both normal and UV light conditions (365 nm). The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyse the electrochemical behaviour of the TPFT-modified glassy carbon electrode (MGCE) and exhibited a lower detection limit of 7.89 × 10<sup>−8</sup> M (S/<i>N</i> = 3) with a linear range of 0.5–8.0 μM for DA detection. The live-cell imaging study of TPFT showed a strong blue emission at 453 nm, which generally indicates the existence of fluorescence stability.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Live Cell Imaging Studies on Orange Emitting Thiazole-Pyridone Azo Fluorophore and Its Latent Fingerprints, Computational, Electrochemical Sensing for Dopamine Detection\",\"authors\":\"Fiza Noor Zahara, J. Keshavayya, Chethan Krishnamurthy, K. M. Pallavi\",\"doi\":\"10.1002/bio.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The fluorescent materials have sparked a lot of research interests due to their unique electronic, optical and chemical characteristics. Here, we are intended to present a simple and facile synthesis of novel orange emitting thiazole-pyridone fluorescent tag (TPFT) by a simple diazo coupling reaction and the structural elucidation was carried out by IR, NMR (<sup>1</sup>H and <sup>13</sup>C), UV–Vis, photoluminescence and HR-MS spectrometry. The solvatochromic behaviour of the TPFT offered crucial information about the formation of hydrazone and azo tautomeric forms. The DFT simulations are computed to calculate HOMO-LUMO energy gap (3.028 eV) of TPFT along with MEP and RDG analyses. Comprehensive LFP visualization is revealed under both normal and UV light conditions (365 nm). The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyse the electrochemical behaviour of the TPFT-modified glassy carbon electrode (MGCE) and exhibited a lower detection limit of 7.89 × 10<sup>−8</sup> M (S/<i>N</i> = 3) with a linear range of 0.5–8.0 μM for DA detection. The live-cell imaging study of TPFT showed a strong blue emission at 453 nm, which generally indicates the existence of fluorescence stability.</p>\\n </div>\",\"PeriodicalId\":49902,\"journal\":{\"name\":\"Luminescence\",\"volume\":\"39 10\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Luminescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bio.70003\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70003","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Live Cell Imaging Studies on Orange Emitting Thiazole-Pyridone Azo Fluorophore and Its Latent Fingerprints, Computational, Electrochemical Sensing for Dopamine Detection
The fluorescent materials have sparked a lot of research interests due to their unique electronic, optical and chemical characteristics. Here, we are intended to present a simple and facile synthesis of novel orange emitting thiazole-pyridone fluorescent tag (TPFT) by a simple diazo coupling reaction and the structural elucidation was carried out by IR, NMR (1H and 13C), UV–Vis, photoluminescence and HR-MS spectrometry. The solvatochromic behaviour of the TPFT offered crucial information about the formation of hydrazone and azo tautomeric forms. The DFT simulations are computed to calculate HOMO-LUMO energy gap (3.028 eV) of TPFT along with MEP and RDG analyses. Comprehensive LFP visualization is revealed under both normal and UV light conditions (365 nm). The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyse the electrochemical behaviour of the TPFT-modified glassy carbon electrode (MGCE) and exhibited a lower detection limit of 7.89 × 10−8 M (S/N = 3) with a linear range of 0.5–8.0 μM for DA detection. The live-cell imaging study of TPFT showed a strong blue emission at 453 nm, which generally indicates the existence of fluorescence stability.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.