使用自然语言处理工具包按精神病诊断对电子健康记录进行分类。

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES Health Informatics Journal Pub Date : 2024-10-01 DOI:10.1177/14604582241296411
Alissa Hutto, Tarek M Zikry, Buck Bohac, Terra Rose, Jasmine Staebler, Janet Slay, C Ray Cheever, Michael R Kosorok, Rebekah P Nash
{"title":"使用自然语言处理工具包按精神病诊断对电子健康记录进行分类。","authors":"Alissa Hutto, Tarek M Zikry, Buck Bohac, Terra Rose, Jasmine Staebler, Janet Slay, C Ray Cheever, Michael R Kosorok, Rebekah P Nash","doi":"10.1177/14604582241296411","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> We analyzed a natural language processing (NLP) toolkit's ability to classify unstructured EHR data by psychiatric diagnosis. Expertise can be a barrier to using NLP. We employed an NLP toolkit (CLARK) created to support studies led by investigators with a range of informatics knowledge. <b>Methods:</b> The EHR of 652 patients were manually reviewed to establish Depression and Substance Use Disorder (SUD) labeled datasets, which were split into training and evaluation datasets. We used CLARK to train depression and SUD classification models using training datasets; model performance was analyzed against evaluation datasets. <b>Results:</b> The depression model accurately classified 69% of records (sensitivity = 0.68, specificity = 0.70, F1 = 0.68). The SUD model accurately classified 84% of records (sensitivity = 0.56, specificity = 0.92, F1 = 0.57). <b>Conclusion:</b> The depression model performed a more balanced job, while the SUD model's high specificity was paired with a low sensitivity. NLP applications may be especially helpful when combined with a confidence threshold for manual review.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"30 4","pages":"14604582241296411"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657637/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using a natural language processing toolkit to classify electronic health records by psychiatric diagnosis.\",\"authors\":\"Alissa Hutto, Tarek M Zikry, Buck Bohac, Terra Rose, Jasmine Staebler, Janet Slay, C Ray Cheever, Michael R Kosorok, Rebekah P Nash\",\"doi\":\"10.1177/14604582241296411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> We analyzed a natural language processing (NLP) toolkit's ability to classify unstructured EHR data by psychiatric diagnosis. Expertise can be a barrier to using NLP. We employed an NLP toolkit (CLARK) created to support studies led by investigators with a range of informatics knowledge. <b>Methods:</b> The EHR of 652 patients were manually reviewed to establish Depression and Substance Use Disorder (SUD) labeled datasets, which were split into training and evaluation datasets. We used CLARK to train depression and SUD classification models using training datasets; model performance was analyzed against evaluation datasets. <b>Results:</b> The depression model accurately classified 69% of records (sensitivity = 0.68, specificity = 0.70, F1 = 0.68). The SUD model accurately classified 84% of records (sensitivity = 0.56, specificity = 0.92, F1 = 0.57). <b>Conclusion:</b> The depression model performed a more balanced job, while the SUD model's high specificity was paired with a low sensitivity. NLP applications may be especially helpful when combined with a confidence threshold for manual review.</p>\",\"PeriodicalId\":55069,\"journal\":{\"name\":\"Health Informatics Journal\",\"volume\":\"30 4\",\"pages\":\"14604582241296411\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Informatics Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/14604582241296411\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241296411","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们分析了自然语言处理(NLP)工具包按精神科诊断对非结构化电子病历数据进行分类的能力。专业知识可能是使用 NLP 的障碍。我们使用了一个 NLP 工具包 (CLARK),该工具包旨在支持由具备各种信息学知识的研究人员领导的研究。研究方法对 652 名患者的电子病历进行人工审核,以建立抑郁和药物使用障碍 (SUD) 标注数据集,并将其分为训练数据集和评估数据集。我们使用 CLARK 对训练数据集进行抑郁和药物使用障碍分类模型的训练,并根据评估数据集分析模型的性能。结果抑郁模型准确分类了 69% 的记录(灵敏度 = 0.68,特异性 = 0.70,F1 = 0.68)。SUD 模型准确分类了 84% 的记录(灵敏度 = 0.56,特异性 = 0.92,F1 = 0.57)。结论抑郁模型的表现更为均衡,而 SUD 模型的高特异性与低灵敏度并存。如果结合人工审核的置信度阈值,NLP 应用可能会特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using a natural language processing toolkit to classify electronic health records by psychiatric diagnosis.

Objective: We analyzed a natural language processing (NLP) toolkit's ability to classify unstructured EHR data by psychiatric diagnosis. Expertise can be a barrier to using NLP. We employed an NLP toolkit (CLARK) created to support studies led by investigators with a range of informatics knowledge. Methods: The EHR of 652 patients were manually reviewed to establish Depression and Substance Use Disorder (SUD) labeled datasets, which were split into training and evaluation datasets. We used CLARK to train depression and SUD classification models using training datasets; model performance was analyzed against evaluation datasets. Results: The depression model accurately classified 69% of records (sensitivity = 0.68, specificity = 0.70, F1 = 0.68). The SUD model accurately classified 84% of records (sensitivity = 0.56, specificity = 0.92, F1 = 0.57). Conclusion: The depression model performed a more balanced job, while the SUD model's high specificity was paired with a low sensitivity. NLP applications may be especially helpful when combined with a confidence threshold for manual review.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
期刊最新文献
Researching public health datasets in the era of deep learning: a systematic literature review. A blueprint for large language model-augmented telehealth for HIV mitigation in Indonesia: A scoping review of a novel therapeutic modality. Advancing African American and hispanic health literacy with a bilingual, personalized, prevention smartphone application. Evaluating the quality of Spanish-language information for patients with type 2 diabetes on YouTube and Facebook. Pathways to usage intention of mobile health apps among hypertensive patients: A fuzzy-set qualitative comparative analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1