{"title":"利用液晶相位调制器开发空间分辨率增强型数字全息显微镜","authors":"Ha-Mong Shim;Ki-Dong Lim;Min-Kyu Park;Kwang-Hoon Lee;Jin Hyeok Kim;Sungjin Lim;Kyung-Il Joo","doi":"10.1109/JPHOT.2024.3481418","DOIUrl":null,"url":null,"abstract":"We proposed a DHM system with improved spatial resolution compared with that of the polarized camera-based DHM system by employing a liquid crystal phase modulator (LCPM). The LCPM-based holographic interferometry optical system can reliably construct a four-step phase shifting scheme by changing the applied voltage, thus eliminating the need for mechanical moving parts. The spatial resolution characteristics of the proposed DHM system were analyzed using the 1951 USAF resolution target. These characteristics showed a fourfold improvement over the polarized camera-based DHM system. Additionally, the 3D information capturing capability of the proposed DHM system was experimentally confirmed using a via-hole array sample produced through the semiconductor fabrication process.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720202","citationCount":"0","resultStr":"{\"title\":\"Development of a Spatial Resolution-Enhanced Digital-Hologram Microscope With a Liquid Crystal Phase Modulator\",\"authors\":\"Ha-Mong Shim;Ki-Dong Lim;Min-Kyu Park;Kwang-Hoon Lee;Jin Hyeok Kim;Sungjin Lim;Kyung-Il Joo\",\"doi\":\"10.1109/JPHOT.2024.3481418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a DHM system with improved spatial resolution compared with that of the polarized camera-based DHM system by employing a liquid crystal phase modulator (LCPM). The LCPM-based holographic interferometry optical system can reliably construct a four-step phase shifting scheme by changing the applied voltage, thus eliminating the need for mechanical moving parts. The spatial resolution characteristics of the proposed DHM system were analyzed using the 1951 USAF resolution target. These characteristics showed a fourfold improvement over the polarized camera-based DHM system. Additionally, the 3D information capturing capability of the proposed DHM system was experimentally confirmed using a via-hole array sample produced through the semiconductor fabrication process.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 6\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720202\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720202/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720202/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of a Spatial Resolution-Enhanced Digital-Hologram Microscope With a Liquid Crystal Phase Modulator
We proposed a DHM system with improved spatial resolution compared with that of the polarized camera-based DHM system by employing a liquid crystal phase modulator (LCPM). The LCPM-based holographic interferometry optical system can reliably construct a four-step phase shifting scheme by changing the applied voltage, thus eliminating the need for mechanical moving parts. The spatial resolution characteristics of the proposed DHM system were analyzed using the 1951 USAF resolution target. These characteristics showed a fourfold improvement over the polarized camera-based DHM system. Additionally, the 3D information capturing capability of the proposed DHM system was experimentally confirmed using a via-hole array sample produced through the semiconductor fabrication process.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.