Emmanouel T. Michailidis;Konstantinos Maliatsos;Demosthenes Vouyioukas
{"title":"无人机应用中的软件定义无线电部署:全面回顾","authors":"Emmanouel T. Michailidis;Konstantinos Maliatsos;Demosthenes Vouyioukas","doi":"10.1109/OJVT.2024.3477937","DOIUrl":null,"url":null,"abstract":"During the last few years, Unmanned Aerial Vehicles (UAVs) have increasingly become primary components of various critical civilian and military applications. As technology rapidly evolves, particularly in the realm of Software-Defined Radio (SDR) and Field-Programmable Gate Arrays (FPGAs), advanced communication protocols and signal processing methods are expected to emerge within UAV-based systems. Crucially, UAVs are expected to capitalize on SDR to enhance communication, sensing, data processing, and defense mechanisms. With this perspective in mind, this paper provides a comprehensive up-to-date review of the integration of SDR technology in UAV-based systems, encompassing the latest techniques, methodologies, and challenges. Specifically, this paper examines case studies and real-world implementations of SDR-assisted UAV-based systems across various domains, including communication, security, detection, classification, and localization, elucidating their efficacy, constraints, and areas for potential improvement. Through this review, valuable insights are offered to researchers, engineers, and practitioners interested in harnessing the synergies between SDR and UAV technologies to address the evolving requirements of contemporary applications and pave the path for future innovations in the field.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713191","citationCount":"0","resultStr":"{\"title\":\"Software-Defined Radio Deployments in UAV-Driven Applications: A Comprehensive Review\",\"authors\":\"Emmanouel T. Michailidis;Konstantinos Maliatsos;Demosthenes Vouyioukas\",\"doi\":\"10.1109/OJVT.2024.3477937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last few years, Unmanned Aerial Vehicles (UAVs) have increasingly become primary components of various critical civilian and military applications. As technology rapidly evolves, particularly in the realm of Software-Defined Radio (SDR) and Field-Programmable Gate Arrays (FPGAs), advanced communication protocols and signal processing methods are expected to emerge within UAV-based systems. Crucially, UAVs are expected to capitalize on SDR to enhance communication, sensing, data processing, and defense mechanisms. With this perspective in mind, this paper provides a comprehensive up-to-date review of the integration of SDR technology in UAV-based systems, encompassing the latest techniques, methodologies, and challenges. Specifically, this paper examines case studies and real-world implementations of SDR-assisted UAV-based systems across various domains, including communication, security, detection, classification, and localization, elucidating their efficacy, constraints, and areas for potential improvement. Through this review, valuable insights are offered to researchers, engineers, and practitioners interested in harnessing the synergies between SDR and UAV technologies to address the evolving requirements of contemporary applications and pave the path for future innovations in the field.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713191\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713191/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10713191/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Software-Defined Radio Deployments in UAV-Driven Applications: A Comprehensive Review
During the last few years, Unmanned Aerial Vehicles (UAVs) have increasingly become primary components of various critical civilian and military applications. As technology rapidly evolves, particularly in the realm of Software-Defined Radio (SDR) and Field-Programmable Gate Arrays (FPGAs), advanced communication protocols and signal processing methods are expected to emerge within UAV-based systems. Crucially, UAVs are expected to capitalize on SDR to enhance communication, sensing, data processing, and defense mechanisms. With this perspective in mind, this paper provides a comprehensive up-to-date review of the integration of SDR technology in UAV-based systems, encompassing the latest techniques, methodologies, and challenges. Specifically, this paper examines case studies and real-world implementations of SDR-assisted UAV-based systems across various domains, including communication, security, detection, classification, and localization, elucidating their efficacy, constraints, and areas for potential improvement. Through this review, valuable insights are offered to researchers, engineers, and practitioners interested in harnessing the synergies between SDR and UAV technologies to address the evolving requirements of contemporary applications and pave the path for future innovations in the field.