Li Sun, Xiaochun Li, Constance Vandenbulcke, Nour El Islam Belmouri, Guillaume Bouchez, Koen Robeyns, Aurelian Rotaru, Kamel Boukheddaden and Yann Garcia
{"title":"三维铁(ii)多孔配位聚合物中客体分子的刺激响应自旋交叉行为†","authors":"Li Sun, Xiaochun Li, Constance Vandenbulcke, Nour El Islam Belmouri, Guillaume Bouchez, Koen Robeyns, Aurelian Rotaru, Kamel Boukheddaden and Yann Garcia","doi":"10.1039/D4MA00527A","DOIUrl":null,"url":null,"abstract":"<p >Structurally characterized porous spin crossover compounds are attractive types of materials due to their properties that can be regulated under several stimuli, resulting in drastic changes in their optical, electrical, and magnetic responses, leading to potential applications in chemical sensing, memory devices, actuators, <em>etc.</em> In this work, a new 3D Fe<small><sup>II</sup></small> spin crossover porous coordination polymer, [Fe(<strong>tpe</strong>)<small><sub>2</sub></small>dca]ClO<small><sub>4</sub></small>·5CHCl<small><sub>3</sub></small>·3CH<small><sub>3</sub></small>OH (<strong>1</strong>, <strong>tpe</strong> = <em>trans</em>-1,2-bis(4-pyridyl)ethene; <strong>dca</strong> = N(CN)<small><sub>2</sub></small><small><sup>−</sup></small>), which accommodates guest molecules in its cavities to modulate its magnetic and optical properties, was prepared. <strong>1</strong> was characterized by X-ray diffraction in its fully solvated form by flash cooling single crystals at 100 K, thermogravimetric analysis, elemental analysis and its spin crossover tracked by magnetic susceptibility, and studied by differential scanning calorimetry on single crystals. Compound <strong>1</strong> displays gradual and incomplete spin crossover behaviour with a transition temperature of <em>T</em><small><sub>1/2</sub></small> ∼ 155 K. An optical microscopy study carried out on one single crystal shows an abrupt transition around 180 K with a darkening of the crystal in the low-spin phase, although no clear evidence of an apparent size change was observed. When compound <strong>1</strong> loses its guest molecules partially, [Fe(<strong>tpe</strong>)<small><sub>2</sub></small>dca]ClO<small><sub>4</sub></small>·CHCl<small><sub>3</sub></small>·2H<small><sub>2</sub></small>O (<strong>2</strong>) is obtained in air atmosphere, which is paramagnetic. In addition, the complex [Fe(<strong>bpa</strong>)<small><sub>2</sub></small>(NCS)<small><sub>2</sub></small>]·solvent (<strong>bpa</strong> = 9,10-bis(4-pyridyl)anthracene, <strong>3</strong>) remains paramagnetic down to 100 K, as confirmed by single crystal X-ray diffraction, due to the strong distortion of its octahedral coordination sphere as well as its rigid structure.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00527a?page=search","citationCount":"0","resultStr":"{\"title\":\"Stimuli-responsive spin crossover behavior in 3D Fe(ii) porous coordination polymers for guest molecules†\",\"authors\":\"Li Sun, Xiaochun Li, Constance Vandenbulcke, Nour El Islam Belmouri, Guillaume Bouchez, Koen Robeyns, Aurelian Rotaru, Kamel Boukheddaden and Yann Garcia\",\"doi\":\"10.1039/D4MA00527A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Structurally characterized porous spin crossover compounds are attractive types of materials due to their properties that can be regulated under several stimuli, resulting in drastic changes in their optical, electrical, and magnetic responses, leading to potential applications in chemical sensing, memory devices, actuators, <em>etc.</em> In this work, a new 3D Fe<small><sup>II</sup></small> spin crossover porous coordination polymer, [Fe(<strong>tpe</strong>)<small><sub>2</sub></small>dca]ClO<small><sub>4</sub></small>·5CHCl<small><sub>3</sub></small>·3CH<small><sub>3</sub></small>OH (<strong>1</strong>, <strong>tpe</strong> = <em>trans</em>-1,2-bis(4-pyridyl)ethene; <strong>dca</strong> = N(CN)<small><sub>2</sub></small><small><sup>−</sup></small>), which accommodates guest molecules in its cavities to modulate its magnetic and optical properties, was prepared. <strong>1</strong> was characterized by X-ray diffraction in its fully solvated form by flash cooling single crystals at 100 K, thermogravimetric analysis, elemental analysis and its spin crossover tracked by magnetic susceptibility, and studied by differential scanning calorimetry on single crystals. Compound <strong>1</strong> displays gradual and incomplete spin crossover behaviour with a transition temperature of <em>T</em><small><sub>1/2</sub></small> ∼ 155 K. An optical microscopy study carried out on one single crystal shows an abrupt transition around 180 K with a darkening of the crystal in the low-spin phase, although no clear evidence of an apparent size change was observed. When compound <strong>1</strong> loses its guest molecules partially, [Fe(<strong>tpe</strong>)<small><sub>2</sub></small>dca]ClO<small><sub>4</sub></small>·CHCl<small><sub>3</sub></small>·2H<small><sub>2</sub></small>O (<strong>2</strong>) is obtained in air atmosphere, which is paramagnetic. In addition, the complex [Fe(<strong>bpa</strong>)<small><sub>2</sub></small>(NCS)<small><sub>2</sub></small>]·solvent (<strong>bpa</strong> = 9,10-bis(4-pyridyl)anthracene, <strong>3</strong>) remains paramagnetic down to 100 K, as confirmed by single crystal X-ray diffraction, due to the strong distortion of its octahedral coordination sphere as well as its rigid structure.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00527a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00527a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00527a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
具有结构特征的多孔自旋交叉化合物是一种极具吸引力的材料类型,因为它们的特性可以在多种刺激下进行调节,从而使其光学、电学和磁学响应发生剧烈变化,有望应用于化学传感、记忆设备和致动器等领域。本研究制备了一种新型三维 FeII 自旋交叉多孔配位聚合物 [Fe(tpe)2dca]ClO4-5CHCl3-3CH3OH(1,tpe = 反式-1,2-双(4-吡啶基)乙烯;dca = N(CN)2-),它能在空穴中容纳客体分子以调节其磁性和光学特性。通过 X 射线衍射、热重分析、元素分析和磁感应强度跟踪其自旋交叉,并通过单晶体差示扫描量热法对化合物 1 进行了研究。对一个单晶体进行的光学显微镜研究表明,在 180 K 左右出现了突然的转变,晶体在低自旋相变暗,但没有观察到明显的尺寸变化。当化合物 1 部分失去客体分子后,在空气中会产生顺磁性的 [Fe(tpe)2dca]ClO4-CHCl3-2H2O (2)。此外,单晶 X 射线衍射证实,[Fe(bpa)2(NCS)2]-溶剂复合物(bpa = 9,10-双(4-吡啶基)蒽,3)在低至 100 K 的温度下仍具有顺磁性,这是因为其八面体配位球发生了强烈变形,而且结构坚硬。
Stimuli-responsive spin crossover behavior in 3D Fe(ii) porous coordination polymers for guest molecules†
Structurally characterized porous spin crossover compounds are attractive types of materials due to their properties that can be regulated under several stimuli, resulting in drastic changes in their optical, electrical, and magnetic responses, leading to potential applications in chemical sensing, memory devices, actuators, etc. In this work, a new 3D FeII spin crossover porous coordination polymer, [Fe(tpe)2dca]ClO4·5CHCl3·3CH3OH (1, tpe = trans-1,2-bis(4-pyridyl)ethene; dca = N(CN)2−), which accommodates guest molecules in its cavities to modulate its magnetic and optical properties, was prepared. 1 was characterized by X-ray diffraction in its fully solvated form by flash cooling single crystals at 100 K, thermogravimetric analysis, elemental analysis and its spin crossover tracked by magnetic susceptibility, and studied by differential scanning calorimetry on single crystals. Compound 1 displays gradual and incomplete spin crossover behaviour with a transition temperature of T1/2 ∼ 155 K. An optical microscopy study carried out on one single crystal shows an abrupt transition around 180 K with a darkening of the crystal in the low-spin phase, although no clear evidence of an apparent size change was observed. When compound 1 loses its guest molecules partially, [Fe(tpe)2dca]ClO4·CHCl3·2H2O (2) is obtained in air atmosphere, which is paramagnetic. In addition, the complex [Fe(bpa)2(NCS)2]·solvent (bpa = 9,10-bis(4-pyridyl)anthracene, 3) remains paramagnetic down to 100 K, as confirmed by single crystal X-ray diffraction, due to the strong distortion of its octahedral coordination sphere as well as its rigid structure.