Violeta Koleva, Trajche Tushev, Sonya Harizanova, Rositsa Kukeva, Maria Shipochka, Pavel Markov and Radostina Stoyanova
{"title":"钠插层过程中磷酸盐-硫酸盐混合电极上铁离子和钒离子的多电子氧化还原反应†。","authors":"Violeta Koleva, Trajche Tushev, Sonya Harizanova, Rositsa Kukeva, Maria Shipochka, Pavel Markov and Radostina Stoyanova","doi":"10.1039/D4MA00754A","DOIUrl":null,"url":null,"abstract":"<p >In order to improve the specific capacity of intercalation electrodes for sodium-ion batteries, it is necessary to identify materials capable of storing Na<small><sup>+</sup></small> ions by activating multi-electron redox reactions. Herein, we report a NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> compound as a multi-electron electrode that combines the most abundant Fe and V ions, having multiple oxidation states, with a stable mixed phosphate–sulfate matrix. Na<small><sub><em>x</em></sub></small>FeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> reversibly intercalates a total of 3 moles of Na<small><sup>+</sup></small> ions (corresponding to a specific capacity of 175 mA h g<small><sup>−1</sup></small>) within a potential range of 1.5–4.2 V, which is concomitant with a limited variation in the lattice volume (up to 5.2%). NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> interacts with rGO, resulting in rGO covering the phosphate–sulphate particles, and the thickness of the covering varies between 5 and 10 nm. The NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small>/rGO composite stores Na<small><sup>+</sup></small> ions <em>via</em> a hybrid mechanism involving faradaic and capacitive reactions. In sodium half-cells, the NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small>/rGO composite displays high capacity (about 90 mA h g<small><sup>−1</sup></small>), and it exhibits an excellent long-term cycling stability at elevated temperatures (about 96–97% after 100 cycles at 20 °C, followed by the next 100 cycles at 40 °C). The improved electrochemical performance is discussed based on the structural robustness of NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> and the surface interaction of NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small>/rGO with an electrolyte salt and electrolyte solvent. The information from this study will be relevant to the design of high energy polyanionic electrodes for practical application in sodium-ion batteries.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8599-8614"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00754a?page=search","citationCount":"0","resultStr":"{\"title\":\"Multi-electron redox reactions with iron and vanadium ions at a mixed phosphate–sulfate electrode during sodium intercalation†\",\"authors\":\"Violeta Koleva, Trajche Tushev, Sonya Harizanova, Rositsa Kukeva, Maria Shipochka, Pavel Markov and Radostina Stoyanova\",\"doi\":\"10.1039/D4MA00754A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In order to improve the specific capacity of intercalation electrodes for sodium-ion batteries, it is necessary to identify materials capable of storing Na<small><sup>+</sup></small> ions by activating multi-electron redox reactions. Herein, we report a NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> compound as a multi-electron electrode that combines the most abundant Fe and V ions, having multiple oxidation states, with a stable mixed phosphate–sulfate matrix. Na<small><sub><em>x</em></sub></small>FeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> reversibly intercalates a total of 3 moles of Na<small><sup>+</sup></small> ions (corresponding to a specific capacity of 175 mA h g<small><sup>−1</sup></small>) within a potential range of 1.5–4.2 V, which is concomitant with a limited variation in the lattice volume (up to 5.2%). NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> interacts with rGO, resulting in rGO covering the phosphate–sulphate particles, and the thickness of the covering varies between 5 and 10 nm. The NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small>/rGO composite stores Na<small><sup>+</sup></small> ions <em>via</em> a hybrid mechanism involving faradaic and capacitive reactions. In sodium half-cells, the NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small>/rGO composite displays high capacity (about 90 mA h g<small><sup>−1</sup></small>), and it exhibits an excellent long-term cycling stability at elevated temperatures (about 96–97% after 100 cycles at 20 °C, followed by the next 100 cycles at 40 °C). The improved electrochemical performance is discussed based on the structural robustness of NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> and the surface interaction of NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small>/rGO with an electrolyte salt and electrolyte solvent. The information from this study will be relevant to the design of high energy polyanionic electrodes for practical application in sodium-ion batteries.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 21\",\"pages\":\" 8599-8614\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00754a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00754a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00754a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了提高钠离子电池插层电极的比容量,有必要找到能够通过激活多电子氧化还原反应储存 Na+ 离子的材料。在此,我们报告了一种作为多电子电极的 NaFeVPO4(SO4)2 化合物,它将具有多种氧化态的最丰富的铁离子和钒离子与稳定的磷酸盐-硫酸盐混合基质结合在一起。在 1.5-4.2 V 的电位范围内,NaxFeVPO4(SO4)2 可逆地夹杂了总计 3 摩尔的 Na+ 离子(相当于 175 mA h g-1 的比容量),同时晶格体积变化有限(最多 5.2%)。NaFeVPO4(SO4)2 与 rGO 相互作用,导致 rGO 覆盖磷酸盐-硫酸盐颗粒,覆盖层的厚度在 5 到 10 纳米之间。NaFeVPO4(SO4)2/rGO 复合材料通过涉及法拉第反应和电容反应的混合机制储存 Na+ 离子。在钠半电池中,NaFeVPO4(SO4)2/rGO 复合材料显示出很高的容量(约 90 mA h g-1),并且在高温下显示出出色的长期循环稳定性(在 20 °C 下循环 100 次后约为 96-97%,然后在 40 °C 下循环 100 次)。电化学性能的提高是基于 NaFeVPO4(SO4)2 结构的稳健性以及 NaFeVPO4(SO4)2/rGO 与电解质盐和电解质溶剂的表面相互作用。本研究提供的信息将有助于设计钠离子电池中实际应用的高能量聚阴离子电极。
Multi-electron redox reactions with iron and vanadium ions at a mixed phosphate–sulfate electrode during sodium intercalation†
In order to improve the specific capacity of intercalation electrodes for sodium-ion batteries, it is necessary to identify materials capable of storing Na+ ions by activating multi-electron redox reactions. Herein, we report a NaFeVPO4(SO4)2 compound as a multi-electron electrode that combines the most abundant Fe and V ions, having multiple oxidation states, with a stable mixed phosphate–sulfate matrix. NaxFeVPO4(SO4)2 reversibly intercalates a total of 3 moles of Na+ ions (corresponding to a specific capacity of 175 mA h g−1) within a potential range of 1.5–4.2 V, which is concomitant with a limited variation in the lattice volume (up to 5.2%). NaFeVPO4(SO4)2 interacts with rGO, resulting in rGO covering the phosphate–sulphate particles, and the thickness of the covering varies between 5 and 10 nm. The NaFeVPO4(SO4)2/rGO composite stores Na+ ions via a hybrid mechanism involving faradaic and capacitive reactions. In sodium half-cells, the NaFeVPO4(SO4)2/rGO composite displays high capacity (about 90 mA h g−1), and it exhibits an excellent long-term cycling stability at elevated temperatures (about 96–97% after 100 cycles at 20 °C, followed by the next 100 cycles at 40 °C). The improved electrochemical performance is discussed based on the structural robustness of NaFeVPO4(SO4)2 and the surface interaction of NaFeVPO4(SO4)2/rGO with an electrolyte salt and electrolyte solvent. The information from this study will be relevant to the design of high energy polyanionic electrodes for practical application in sodium-ion batteries.