光催化、电催化和光电催化选择性氧化 5-羟甲基糠醛的研究进展

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-09-27 DOI:10.1039/D4GC03597F
Yang An, Tao Lei, Weiyi Jiang and Huan Pang
{"title":"光催化、电催化和光电催化选择性氧化 5-羟甲基糠醛的研究进展","authors":"Yang An, Tao Lei, Weiyi Jiang and Huan Pang","doi":"10.1039/D4GC03597F","DOIUrl":null,"url":null,"abstract":"<p >Due to the increasing demand for fossil fuel resources in modern society, attention is turning towards alternative sources. This paper firstly introduces the importance of the oxidation reaction of 5-hydroxymethylfurfural (HMF) and its widespread application in the field of biomass conversion. However, precise control over the selective oxidation of biomass-derived platform chemicals remains challenging, necessitating in-depth investigation into the mechanism of this oxidation process. Subsequently, the mechanism of the HMF oxidation reaction is discussed in detail, including the design and performance optimization of both traditional and novel catalysts, aiming to provide theoretical guidance and technical support for efficient and selective HMF oxidation. In the field of photocatalysis, strategies such as the introduction of photoresponsive catalysts, surface modification, and synergistic catalysis have been employed to enhance reaction rates and selectivity. In electrocatalysis, efficient conversion of HMF has been achieved through the modulation of catalyst structure and active sites. Meanwhile, photoelectrocatalysis hybrid systems, as emerging technologies integrating the advantages of both photocatalysis and electrocatalysis, demonstrate promising application prospects, with an overview of their research in HMF oxidation provided herein. Furthermore, the paper discusses the challenges faced by current selective HMF oxidation, including catalyst stability, selectivity, and product distribution, and proposes future research directions and prospects, including the design of multifunctional catalysts, optimization of reaction conditions, and in-depth exploration of catalytic mechanisms, to provide important references for achieving efficient biomass conversion. In summary, this paper systematically summarizes the latest research progress in selective photocatalysis, electrocatalysis, and photoelectrocatalysis for HMF oxidation, and provides prospects for future development, aiming to offer references and insights for relevant research fields.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on photocatalytic, electrocatalytic and photoelectrocatalytic selective oxidation of 5-hydroxymethylfurfural\",\"authors\":\"Yang An, Tao Lei, Weiyi Jiang and Huan Pang\",\"doi\":\"10.1039/D4GC03597F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Due to the increasing demand for fossil fuel resources in modern society, attention is turning towards alternative sources. This paper firstly introduces the importance of the oxidation reaction of 5-hydroxymethylfurfural (HMF) and its widespread application in the field of biomass conversion. However, precise control over the selective oxidation of biomass-derived platform chemicals remains challenging, necessitating in-depth investigation into the mechanism of this oxidation process. Subsequently, the mechanism of the HMF oxidation reaction is discussed in detail, including the design and performance optimization of both traditional and novel catalysts, aiming to provide theoretical guidance and technical support for efficient and selective HMF oxidation. In the field of photocatalysis, strategies such as the introduction of photoresponsive catalysts, surface modification, and synergistic catalysis have been employed to enhance reaction rates and selectivity. In electrocatalysis, efficient conversion of HMF has been achieved through the modulation of catalyst structure and active sites. Meanwhile, photoelectrocatalysis hybrid systems, as emerging technologies integrating the advantages of both photocatalysis and electrocatalysis, demonstrate promising application prospects, with an overview of their research in HMF oxidation provided herein. Furthermore, the paper discusses the challenges faced by current selective HMF oxidation, including catalyst stability, selectivity, and product distribution, and proposes future research directions and prospects, including the design of multifunctional catalysts, optimization of reaction conditions, and in-depth exploration of catalytic mechanisms, to provide important references for achieving efficient biomass conversion. In summary, this paper systematically summarizes the latest research progress in selective photocatalysis, electrocatalysis, and photoelectrocatalysis for HMF oxidation, and provides prospects for future development, aiming to offer references and insights for relevant research fields.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc03597f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc03597f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于现代社会对化石燃料资源的需求日益增长,人们开始关注替代资源。本文首先介绍了 5-羟甲基糠醛(HMF)氧化反应的重要性及其在生物质转化领域的广泛应用。然而,精确控制生物质衍生平台化学品的选择性氧化仍具有挑战性,因此有必要对这一氧化过程的机理进行深入研究。随后,详细讨论了 HMF 氧化反应的机理,包括传统催化剂和新型催化剂的设计和性能优化,旨在为高效和选择性 HMF 氧化提供理论指导和技术支持。在光催化领域,为了提高反应速率和选择性,人们采用了引入光响应催化剂、表面改性和协同催化等策略。在电催化领域,通过调节催化剂结构和活性位点,实现了 HMF 的高效转化。同时,光电催化混合系统作为集光催化和电催化优点于一身的新兴技术,显示出广阔的应用前景,本文概述了其在 HMF 氧化方面的研究。此外,本文还讨论了目前选择性 HMF 氧化所面临的挑战,包括催化剂稳定性、选择性和产物分布等,并提出了未来的研究方向和前景,包括多功能催化剂的设计、反应条件的优化和催化机理的深入探讨等,为实现生物质的高效转化提供了重要参考。综上所述,本文系统总结了选择性光催化、电催化和光电催化在HMF氧化方面的最新研究进展,并对未来发展进行了展望,旨在为相关研究领域提供参考和启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research progress on photocatalytic, electrocatalytic and photoelectrocatalytic selective oxidation of 5-hydroxymethylfurfural

Due to the increasing demand for fossil fuel resources in modern society, attention is turning towards alternative sources. This paper firstly introduces the importance of the oxidation reaction of 5-hydroxymethylfurfural (HMF) and its widespread application in the field of biomass conversion. However, precise control over the selective oxidation of biomass-derived platform chemicals remains challenging, necessitating in-depth investigation into the mechanism of this oxidation process. Subsequently, the mechanism of the HMF oxidation reaction is discussed in detail, including the design and performance optimization of both traditional and novel catalysts, aiming to provide theoretical guidance and technical support for efficient and selective HMF oxidation. In the field of photocatalysis, strategies such as the introduction of photoresponsive catalysts, surface modification, and synergistic catalysis have been employed to enhance reaction rates and selectivity. In electrocatalysis, efficient conversion of HMF has been achieved through the modulation of catalyst structure and active sites. Meanwhile, photoelectrocatalysis hybrid systems, as emerging technologies integrating the advantages of both photocatalysis and electrocatalysis, demonstrate promising application prospects, with an overview of their research in HMF oxidation provided herein. Furthermore, the paper discusses the challenges faced by current selective HMF oxidation, including catalyst stability, selectivity, and product distribution, and proposes future research directions and prospects, including the design of multifunctional catalysts, optimization of reaction conditions, and in-depth exploration of catalytic mechanisms, to provide important references for achieving efficient biomass conversion. In summary, this paper systematically summarizes the latest research progress in selective photocatalysis, electrocatalysis, and photoelectrocatalysis for HMF oxidation, and provides prospects for future development, aiming to offer references and insights for relevant research fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1