Wei Dou, Shanshan Hou, Xinyue Wang, Fang Ma, Huiwen Ji, Quan Zheng
{"title":"光纤耦合蓝色激光二极管模块泵浦pr: YLF 激光器产生的 679/339.5 nm 辐射","authors":"Wei Dou, Shanshan Hou, Xinyue Wang, Fang Ma, Huiwen Ji, Quan Zheng","doi":"10.1007/s00340-024-08341-7","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate the high-power continuous-wave (CW) operation of a Pr: YLF laser at 679 nm by suppressing the higher gain transitions near 640 nm, 670 nm and 698 nm. For 679 nm, the maximum output power is 3.5 W. The absorbed pumping power is 22 W in σ polarization. The optical-to-optical conversion efficiency is quite high, reaching 15.9%, and the output power stability in 2 h is better than 0.5%. Moreover, intracavity second harmonic generation had been achieved output power of 620 mW at 339.5 nm by using a LBO nonlinear crystal. To the best of our knowledge, laser diode-pumped laser action at 679/339.5 nm was demonstrated for what is believed to be the first time.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"679/339.5 nm radiation generation of pr: YLF laser pumped by fiber coupled blue laser diode module\",\"authors\":\"Wei Dou, Shanshan Hou, Xinyue Wang, Fang Ma, Huiwen Ji, Quan Zheng\",\"doi\":\"10.1007/s00340-024-08341-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We demonstrate the high-power continuous-wave (CW) operation of a Pr: YLF laser at 679 nm by suppressing the higher gain transitions near 640 nm, 670 nm and 698 nm. For 679 nm, the maximum output power is 3.5 W. The absorbed pumping power is 22 W in σ polarization. The optical-to-optical conversion efficiency is quite high, reaching 15.9%, and the output power stability in 2 h is better than 0.5%. Moreover, intracavity second harmonic generation had been achieved output power of 620 mW at 339.5 nm by using a LBO nonlinear crystal. To the best of our knowledge, laser diode-pumped laser action at 679/339.5 nm was demonstrated for what is believed to be the first time.</p></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-024-08341-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-024-08341-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
679/339.5 nm radiation generation of pr: YLF laser pumped by fiber coupled blue laser diode module
We demonstrate the high-power continuous-wave (CW) operation of a Pr: YLF laser at 679 nm by suppressing the higher gain transitions near 640 nm, 670 nm and 698 nm. For 679 nm, the maximum output power is 3.5 W. The absorbed pumping power is 22 W in σ polarization. The optical-to-optical conversion efficiency is quite high, reaching 15.9%, and the output power stability in 2 h is better than 0.5%. Moreover, intracavity second harmonic generation had been achieved output power of 620 mW at 339.5 nm by using a LBO nonlinear crystal. To the best of our knowledge, laser diode-pumped laser action at 679/339.5 nm was demonstrated for what is believed to be the first time.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.