Dang T. Nguyen, Hai V. Mai, Han H. La, Anh D. Nguyen, Anh H. Nguyen
{"title":"M3+(H2O)5-6 离子(M = Fe、Ru 和 Os)与羟基相互作用的比较研究","authors":"Dang T. Nguyen, Hai V. Mai, Han H. La, Anh D. Nguyen, Anh H. Nguyen","doi":"10.1007/s00894-024-06185-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>The heavy metal ions are the typical carcinogenic agents. Up to now, the interaction mechanism of toxic metal ions with the biomolecules such as carbohyrate have not been elucidated and reported in the detail. In this research work, the adjacent dissociation Gibbs energy (E<sub>AB</sub>) of M<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub>(R-OH) complexes depended significantly on the molecular volume of primary alcohols and the inductive effects of substituent R in primary alcohols (R = CH<sub>3</sub>, CH<sub>3</sub>CH<sub>2</sub>, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, Cl-CH<sub>2</sub>, F-CH<sub>2</sub>) as well as the length of linear cellulose. The affinity of M<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub> ions with the sixth water molecule in gas phase reduced in the order as follows: Fe<sup>3+</sup> > Ru<sup>3+</sup> > Os<sup>3+</sup>, which were determined by the E<sub>AB</sub> values and bond lengths of M–O. The water solvent made the E<sub>AB</sub> values of Fe<sup>3+</sup>(H<sub>2</sub>O)<sub>6</sub> ions and Fe<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub>(CH<sub>3</sub>OH) ions changed completely in the case of the polarizable continuum model, while the Onsager model gave the good agreement with the gas phase model.</p><h3>Methods</h3><p>The nature of interaction between hydrated Fe<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub> ion and the hydroxy groups of primary alcohols were investigated using density functional theory method at the B3LYP/6–311 + G** level, the PBEPBE/6–311 + G** level. The influence of water solvent was evaluated using the Onsager model and the polarizable continuum model. The two-layer ONIOM approach and the local softness analysis were employed for the hydroxy groups of linear cellulose at the B3LYP/6–311 + G**:HF/6-31G* level. The affinity of M<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub> ions (M = Fe, Ru, and Os) with the sixth water molecule were probed at the B3LYP/QZVPP/6–311 + G** level (QZVPP basis set for the metal atoms).\n</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on the interaction of M3+(H2O)5–6 ions (M = Fe, Ru, and Os) with the hydroxy group\",\"authors\":\"Dang T. Nguyen, Hai V. Mai, Han H. La, Anh D. Nguyen, Anh H. Nguyen\",\"doi\":\"10.1007/s00894-024-06185-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>The heavy metal ions are the typical carcinogenic agents. Up to now, the interaction mechanism of toxic metal ions with the biomolecules such as carbohyrate have not been elucidated and reported in the detail. In this research work, the adjacent dissociation Gibbs energy (E<sub>AB</sub>) of M<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub>(R-OH) complexes depended significantly on the molecular volume of primary alcohols and the inductive effects of substituent R in primary alcohols (R = CH<sub>3</sub>, CH<sub>3</sub>CH<sub>2</sub>, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, Cl-CH<sub>2</sub>, F-CH<sub>2</sub>) as well as the length of linear cellulose. The affinity of M<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub> ions with the sixth water molecule in gas phase reduced in the order as follows: Fe<sup>3+</sup> > Ru<sup>3+</sup> > Os<sup>3+</sup>, which were determined by the E<sub>AB</sub> values and bond lengths of M–O. The water solvent made the E<sub>AB</sub> values of Fe<sup>3+</sup>(H<sub>2</sub>O)<sub>6</sub> ions and Fe<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub>(CH<sub>3</sub>OH) ions changed completely in the case of the polarizable continuum model, while the Onsager model gave the good agreement with the gas phase model.</p><h3>Methods</h3><p>The nature of interaction between hydrated Fe<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub> ion and the hydroxy groups of primary alcohols were investigated using density functional theory method at the B3LYP/6–311 + G** level, the PBEPBE/6–311 + G** level. The influence of water solvent was evaluated using the Onsager model and the polarizable continuum model. The two-layer ONIOM approach and the local softness analysis were employed for the hydroxy groups of linear cellulose at the B3LYP/6–311 + G**:HF/6-31G* level. The affinity of M<sup>3+</sup>(H<sub>2</sub>O)<sub>5</sub> ions (M = Fe, Ru, and Os) with the sixth water molecule were probed at the B3LYP/QZVPP/6–311 + G** level (QZVPP basis set for the metal atoms).\\n</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"30 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06185-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06185-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A comparative study on the interaction of M3+(H2O)5–6 ions (M = Fe, Ru, and Os) with the hydroxy group
Context
The heavy metal ions are the typical carcinogenic agents. Up to now, the interaction mechanism of toxic metal ions with the biomolecules such as carbohyrate have not been elucidated and reported in the detail. In this research work, the adjacent dissociation Gibbs energy (EAB) of M3+(H2O)5(R-OH) complexes depended significantly on the molecular volume of primary alcohols and the inductive effects of substituent R in primary alcohols (R = CH3, CH3CH2, CH3CH2CH2, CH3CH2CH2CH2, Cl-CH2, F-CH2) as well as the length of linear cellulose. The affinity of M3+(H2O)5 ions with the sixth water molecule in gas phase reduced in the order as follows: Fe3+ > Ru3+ > Os3+, which were determined by the EAB values and bond lengths of M–O. The water solvent made the EAB values of Fe3+(H2O)6 ions and Fe3+(H2O)5(CH3OH) ions changed completely in the case of the polarizable continuum model, while the Onsager model gave the good agreement with the gas phase model.
Methods
The nature of interaction between hydrated Fe3+(H2O)5 ion and the hydroxy groups of primary alcohols were investigated using density functional theory method at the B3LYP/6–311 + G** level, the PBEPBE/6–311 + G** level. The influence of water solvent was evaluated using the Onsager model and the polarizable continuum model. The two-layer ONIOM approach and the local softness analysis were employed for the hydroxy groups of linear cellulose at the B3LYP/6–311 + G**:HF/6-31G* level. The affinity of M3+(H2O)5 ions (M = Fe, Ru, and Os) with the sixth water molecule were probed at the B3LYP/QZVPP/6–311 + G** level (QZVPP basis set for the metal atoms).
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.