利用地面和空间遥感估算墨西哥城的二氧化碳排放量

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-10-25 DOI:10.1029/2024JD041297
Ke Che, Thomas Lauvaux, Noemie Taquet, Wolfgang Stremme, Yang Xu, Carlos Alberti, Morgan Lopez, Agustín García-Reynoso, Philippe Ciais, Yi Liu, Michel Ramonet, Michel Grutter
{"title":"利用地面和空间遥感估算墨西哥城的二氧化碳排放量","authors":"Ke Che,&nbsp;Thomas Lauvaux,&nbsp;Noemie Taquet,&nbsp;Wolfgang Stremme,&nbsp;Yang Xu,&nbsp;Carlos Alberti,&nbsp;Morgan Lopez,&nbsp;Agustín García-Reynoso,&nbsp;Philippe Ciais,&nbsp;Yi Liu,&nbsp;Michel Ramonet,&nbsp;Michel Grutter","doi":"10.1029/2024JD041297","DOIUrl":null,"url":null,"abstract":"<p>The Mexico City Metropolitan Area (MCMA) stands as one of the most densely populated urban regions globally. To quantify the urban <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> emissions in the MCMA, we independently assimilated observations from a dense column-integrated Fourier transform infrared (FTIR) network and OCO-3 Snapshot Area Map observations between October 2020 and May 2021. Applying a computationally efficient analytical Bayesian inversion technique, we inverted for surface fluxes at high spatio-temporal resolutions (1-km and 1-hr). The fossil fuel (FF) emission estimates of 5.08 and 6.77 Gg<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>/hr reported by the global and local emission inventories were optimized to 4.85 and 5.51 Gg<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>/hr based on FTIR observations over this 7 month period, highlighting a convergence of posterior estimates. The modeled biogenic flux estimate of −0.14 Gg<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>/hr was improved to −0.33 to −0.27 Gg<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>/hr, respectively. It is worth noting that utilizing observations from three primary sites significantly enhanced the accuracy of estimates (13.6 <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 29.2%) around the other four. Using FTIR posterior estimates can improve simulation with the OCO-3 data set. OCO-3 shows a similar decreasing trend in FF emissions (from 6.37 Gg<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>/hr to 6.36 and 5.04 Gg<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>/hr) as FTIR, but its correction trends for biogenic sources differ, changing from 0.37 to 0.48 Gg<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>/hr. The primary reason is OCO-3's lower temporal sampling density. Aligning the FTIR inversion timing with that of OCO-3 yielded comparable corrections for FF emissions, yet discrepancies in biogenic emissions persisted, which can be attributed to their different sampling locations in the rural region and discrepancy in X<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> observations. Our findings mark a significant step toward validating OCO-3 and FTIR inversion results in metropolitan region.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 20","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041297","citationCount":"0","resultStr":"{\"title\":\"CO2 Emissions Estimate From Mexico City Using Ground- and Space-Based Remote Sensing\",\"authors\":\"Ke Che,&nbsp;Thomas Lauvaux,&nbsp;Noemie Taquet,&nbsp;Wolfgang Stremme,&nbsp;Yang Xu,&nbsp;Carlos Alberti,&nbsp;Morgan Lopez,&nbsp;Agustín García-Reynoso,&nbsp;Philippe Ciais,&nbsp;Yi Liu,&nbsp;Michel Ramonet,&nbsp;Michel Grutter\",\"doi\":\"10.1029/2024JD041297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Mexico City Metropolitan Area (MCMA) stands as one of the most densely populated urban regions globally. To quantify the urban <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> emissions in the MCMA, we independently assimilated observations from a dense column-integrated Fourier transform infrared (FTIR) network and OCO-3 Snapshot Area Map observations between October 2020 and May 2021. Applying a computationally efficient analytical Bayesian inversion technique, we inverted for surface fluxes at high spatio-temporal resolutions (1-km and 1-hr). The fossil fuel (FF) emission estimates of 5.08 and 6.77 Gg<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math>/hr reported by the global and local emission inventories were optimized to 4.85 and 5.51 Gg<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math>/hr based on FTIR observations over this 7 month period, highlighting a convergence of posterior estimates. The modeled biogenic flux estimate of −0.14 Gg<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math>/hr was improved to −0.33 to −0.27 Gg<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math>/hr, respectively. It is worth noting that utilizing observations from three primary sites significantly enhanced the accuracy of estimates (13.6 <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math> 29.2%) around the other four. Using FTIR posterior estimates can improve simulation with the OCO-3 data set. OCO-3 shows a similar decreasing trend in FF emissions (from 6.37 Gg<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math>/hr to 6.36 and 5.04 Gg<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math>/hr) as FTIR, but its correction trends for biogenic sources differ, changing from 0.37 to 0.48 Gg<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math>/hr. The primary reason is OCO-3's lower temporal sampling density. Aligning the FTIR inversion timing with that of OCO-3 yielded comparable corrections for FF emissions, yet discrepancies in biogenic emissions persisted, which can be attributed to their different sampling locations in the rural region and discrepancy in X<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> observations. Our findings mark a significant step toward validating OCO-3 and FTIR inversion results in metropolitan region.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"129 20\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041297\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041297\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041297","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

墨西哥城大都市区(MCMA)是全球人口最稠密的城市地区之一。为了量化墨西哥城都会区的城市 CO 2 ${text{CO}}_{2}$ 排放量,我们独立同化了 2020 年 10 月至 2021 年 5 月期间密集的列积分傅立叶变换红外(FTIR)网络观测数据和 OCO-3 快照区域图观测数据。我们采用计算高效的贝叶斯分析反演技术,对高时空分辨率(1 公里和 1 小时)的地表通量进行了反演。根据这7个月期间的傅立叶变换红外观测数据,全球和地方排放清单报告的化石燃料(FF)排放量估计值分别为5.08和6.77千兆克CO 2 ${text{CO}}_{2}$ /小时,优化后分别为4.85和5.51千兆克CO 2 ${text{CO}}_{2}$ /小时,凸显了后验估计值的趋同。模拟的生物通量估计值-0.14 千兆克 CO 2 ${text{CO}}_{2}$ /小时分别提高到-0.33 到-0.27 千兆克 CO 2 ${text{CO}}_{2}$ /小时。值得注意的是,利用三个主要观测点的观测数据大大提高了其他四个观测点的估计精度(13.6 ∼ ${\sim} $ 29.2%)。使用傅立叶变换红外后验估计值可以改进对 OCO-3 数据集的模拟。OCO-3 显示了与 FTIR 相似的 FF 排放下降趋势(从 6.37 千兆克 CO 2 ${text{CO}}_{2}$ /小时下降到 6.36 和 5.04 千兆克 CO 2 ${text{CO}}_{2}$ /小时),但其生物源修正趋势不同,从 0.37 千兆克 CO 2 ${text{CO}}_{2}$ /小时变化到 0.48 千兆克 CO 2 ${text{CO}}_{2}$ /小时。主要原因是 OCO-3 的时间采样密度较低。将傅立叶变换红外反演时间与 OCO-3 的反演时间相一致,可以得到类似的傅立叶排放修正,但生物源排放的差异仍然存在,这可能是由于它们在农村地区的采样位置不同以及 X CO 2 ${\text{CO}}_{2}$ 观测结果的差异造成的。我们的发现标志着向验证大都市地区的 OCO-3 和傅立叶变换反演结果迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO2 Emissions Estimate From Mexico City Using Ground- and Space-Based Remote Sensing

The Mexico City Metropolitan Area (MCMA) stands as one of the most densely populated urban regions globally. To quantify the urban CO 2 ${\text{CO}}_{2}$ emissions in the MCMA, we independently assimilated observations from a dense column-integrated Fourier transform infrared (FTIR) network and OCO-3 Snapshot Area Map observations between October 2020 and May 2021. Applying a computationally efficient analytical Bayesian inversion technique, we inverted for surface fluxes at high spatio-temporal resolutions (1-km and 1-hr). The fossil fuel (FF) emission estimates of 5.08 and 6.77 Gg CO 2 ${\text{CO}}_{2}$ /hr reported by the global and local emission inventories were optimized to 4.85 and 5.51 Gg CO 2 ${\text{CO}}_{2}$ /hr based on FTIR observations over this 7 month period, highlighting a convergence of posterior estimates. The modeled biogenic flux estimate of −0.14 Gg CO 2 ${\text{CO}}_{2}$ /hr was improved to −0.33 to −0.27 Gg CO 2 ${\text{CO}}_{2}$ /hr, respectively. It is worth noting that utilizing observations from three primary sites significantly enhanced the accuracy of estimates (13.6 ${\sim} $ 29.2%) around the other four. Using FTIR posterior estimates can improve simulation with the OCO-3 data set. OCO-3 shows a similar decreasing trend in FF emissions (from 6.37 Gg CO 2 ${\text{CO}}_{2}$ /hr to 6.36 and 5.04 Gg CO 2 ${\text{CO}}_{2}$ /hr) as FTIR, but its correction trends for biogenic sources differ, changing from 0.37 to 0.48 Gg CO 2 ${\text{CO}}_{2}$ /hr. The primary reason is OCO-3's lower temporal sampling density. Aligning the FTIR inversion timing with that of OCO-3 yielded comparable corrections for FF emissions, yet discrepancies in biogenic emissions persisted, which can be attributed to their different sampling locations in the rural region and discrepancy in X CO 2 ${\text{CO}}_{2}$ observations. Our findings mark a significant step toward validating OCO-3 and FTIR inversion results in metropolitan region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Analysis of the Influence of Clear-Sky Fluxes on the Cloud-Type Mean Cloud Radiative Effects in the Tropical Convectively Active Regions With CERES Satellite Data A Simple Model for the Evaporation of Hydrometeors and Their Isotopes Modeling the Effects of Vegetation and Snow on Dust Storm Over the Gobi Desert Origins of Extreme CAPE Around the World A More Transparent Infrared Window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1