Dilawar Shah, Mohammad Asmat Ullah Khan, Mohammad Abrar, Muhammad Tahir
{"title":"利用集合深度学习方法优化乳腺癌检测","authors":"Dilawar Shah, Mohammad Asmat Ullah Khan, Mohammad Abrar, Muhammad Tahir","doi":"10.1155/2024/5564649","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the global fight against breast cancer, the importance of early diagnosis is unparalleled. Early identification not only improves treatment options but also significantly improves survival rates. Our research introduces an innovative ensemble method that synergistically combines the strengths of four state-of-the-art convolutional neural networks (CNNs): EfficientNet, AlexNet, ResNet, and DenseNet. These networks were chosen for their architectural advances and proven efficacy in image classification tasks, particularly in medical imaging. Each network within our ensemble is uniquely optimized: EfficientNet is fine-tuned with customized scaling to address dataset specifics; AlexNet employs a variable dropout mechanism to reduce overfitting; ResNet benefits from learnable weighted skip connections for better gradient flow; and DenseNet uses selective connectivity to balance computational efficiency and feature extraction. This ensembling strategy combines the predictive output of multiple CNNs, each trained with an individually optimized network, to enhance the ensemble’s overall diagnostic performance. This provides higher precision and stability than any model and shows outstanding performance in the early stage of breast cancer with a precision of up to 94.6%, sensitivity of 92.4%, specificity of 96.1%, and area under the curve (AUC) of 98.0%. This ensemble framework indicated a leap in the early diagnosis of breast cancer as it is a powerful tool that combines several state-of-the-art techniques, hence providing better results.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5564649","citationCount":"0","resultStr":"{\"title\":\"Optimizing Breast Cancer Detection With an Ensemble Deep Learning Approach\",\"authors\":\"Dilawar Shah, Mohammad Asmat Ullah Khan, Mohammad Abrar, Muhammad Tahir\",\"doi\":\"10.1155/2024/5564649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In the global fight against breast cancer, the importance of early diagnosis is unparalleled. Early identification not only improves treatment options but also significantly improves survival rates. Our research introduces an innovative ensemble method that synergistically combines the strengths of four state-of-the-art convolutional neural networks (CNNs): EfficientNet, AlexNet, ResNet, and DenseNet. These networks were chosen for their architectural advances and proven efficacy in image classification tasks, particularly in medical imaging. Each network within our ensemble is uniquely optimized: EfficientNet is fine-tuned with customized scaling to address dataset specifics; AlexNet employs a variable dropout mechanism to reduce overfitting; ResNet benefits from learnable weighted skip connections for better gradient flow; and DenseNet uses selective connectivity to balance computational efficiency and feature extraction. This ensembling strategy combines the predictive output of multiple CNNs, each trained with an individually optimized network, to enhance the ensemble’s overall diagnostic performance. This provides higher precision and stability than any model and shows outstanding performance in the early stage of breast cancer with a precision of up to 94.6%, sensitivity of 92.4%, specificity of 96.1%, and area under the curve (AUC) of 98.0%. This ensemble framework indicated a leap in the early diagnosis of breast cancer as it is a powerful tool that combines several state-of-the-art techniques, hence providing better results.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5564649\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5564649\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5564649","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Optimizing Breast Cancer Detection With an Ensemble Deep Learning Approach
In the global fight against breast cancer, the importance of early diagnosis is unparalleled. Early identification not only improves treatment options but also significantly improves survival rates. Our research introduces an innovative ensemble method that synergistically combines the strengths of four state-of-the-art convolutional neural networks (CNNs): EfficientNet, AlexNet, ResNet, and DenseNet. These networks were chosen for their architectural advances and proven efficacy in image classification tasks, particularly in medical imaging. Each network within our ensemble is uniquely optimized: EfficientNet is fine-tuned with customized scaling to address dataset specifics; AlexNet employs a variable dropout mechanism to reduce overfitting; ResNet benefits from learnable weighted skip connections for better gradient flow; and DenseNet uses selective connectivity to balance computational efficiency and feature extraction. This ensembling strategy combines the predictive output of multiple CNNs, each trained with an individually optimized network, to enhance the ensemble’s overall diagnostic performance. This provides higher precision and stability than any model and shows outstanding performance in the early stage of breast cancer with a precision of up to 94.6%, sensitivity of 92.4%, specificity of 96.1%, and area under the curve (AUC) of 98.0%. This ensemble framework indicated a leap in the early diagnosis of breast cancer as it is a powerful tool that combines several state-of-the-art techniques, hence providing better results.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.