Vladimir Pomogaev, Elena Bocharnikova, Olga Tchaikovskaya, Pavel Avramov
{"title":"苯酚光静态光谱和量子经典光动力去质子化作用","authors":"Vladimir Pomogaev, Elena Bocharnikova, Olga Tchaikovskaya, Pavel Avramov","doi":"10.1002/qua.27504","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The spectral-luminescence properties and photochemical conversions of phenol were analyzed for an isolated molecule as well as in water solvents in a continuum implicit model and explicit atomistic surroundings. This involved employing cut-edge hybrid quantum-classical methodologies to generate static optical spectra and the excited dissipative crossing potential energy curves. A combination of electronic excitations, gradient calculations, and embedding electrostatic potential fitting charges on quantum-classical molecular dynamic propagation trajectories provided statistically averaged absorption spectra. The mixed-reference spin-flip multiconfigurational linear response method based on reference triplet preprocessed in the time-dependent density-functional theory was utilized to determine conical intersections between the lowest excited and ground states, as well as two-stage transitions from the second excitation to the ground state. Non-adiabatic quantum-classical molecular dynamics defined photodissipative trajectories of excited states, their lifetimes, and crossing points through trajectory surface hopping together with the mixed-reference spin-flip and embedding electrostatic potential fitting approaches. Dyson orbitals of the extended Koopmans' theorem were applied to reveal the nature of molecular states at conical intersections and key points on photodynamic trajectories. Potential hydroxyl group cleavage predicted with conical intersections searching turns to “swift” O<span></span>H deprotonation through |π→<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>σ</mi>\n <mi>OH</mi>\n <mo>*</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {\\upsigma}_{\\mathrm{OH}}^{\\ast } $$</annotation>\n </semantics></math>⟩ transition along photodynamic propagations in contrast with “long” processes leading to benzene ring deformation with stable O<span></span>H bond.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenol Photostatic Spectra and Quantum-Classical Photodynamic Deprotonation\",\"authors\":\"Vladimir Pomogaev, Elena Bocharnikova, Olga Tchaikovskaya, Pavel Avramov\",\"doi\":\"10.1002/qua.27504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The spectral-luminescence properties and photochemical conversions of phenol were analyzed for an isolated molecule as well as in water solvents in a continuum implicit model and explicit atomistic surroundings. This involved employing cut-edge hybrid quantum-classical methodologies to generate static optical spectra and the excited dissipative crossing potential energy curves. A combination of electronic excitations, gradient calculations, and embedding electrostatic potential fitting charges on quantum-classical molecular dynamic propagation trajectories provided statistically averaged absorption spectra. The mixed-reference spin-flip multiconfigurational linear response method based on reference triplet preprocessed in the time-dependent density-functional theory was utilized to determine conical intersections between the lowest excited and ground states, as well as two-stage transitions from the second excitation to the ground state. Non-adiabatic quantum-classical molecular dynamics defined photodissipative trajectories of excited states, their lifetimes, and crossing points through trajectory surface hopping together with the mixed-reference spin-flip and embedding electrostatic potential fitting approaches. Dyson orbitals of the extended Koopmans' theorem were applied to reveal the nature of molecular states at conical intersections and key points on photodynamic trajectories. Potential hydroxyl group cleavage predicted with conical intersections searching turns to “swift” O<span></span>H deprotonation through |π→<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>σ</mi>\\n <mi>OH</mi>\\n <mo>*</mo>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\upsigma}_{\\\\mathrm{OH}}^{\\\\ast } $$</annotation>\\n </semantics></math>⟩ transition along photodynamic propagations in contrast with “long” processes leading to benzene ring deformation with stable O<span></span>H bond.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"124 21\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27504\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27504","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Phenol Photostatic Spectra and Quantum-Classical Photodynamic Deprotonation
The spectral-luminescence properties and photochemical conversions of phenol were analyzed for an isolated molecule as well as in water solvents in a continuum implicit model and explicit atomistic surroundings. This involved employing cut-edge hybrid quantum-classical methodologies to generate static optical spectra and the excited dissipative crossing potential energy curves. A combination of electronic excitations, gradient calculations, and embedding electrostatic potential fitting charges on quantum-classical molecular dynamic propagation trajectories provided statistically averaged absorption spectra. The mixed-reference spin-flip multiconfigurational linear response method based on reference triplet preprocessed in the time-dependent density-functional theory was utilized to determine conical intersections between the lowest excited and ground states, as well as two-stage transitions from the second excitation to the ground state. Non-adiabatic quantum-classical molecular dynamics defined photodissipative trajectories of excited states, their lifetimes, and crossing points through trajectory surface hopping together with the mixed-reference spin-flip and embedding electrostatic potential fitting approaches. Dyson orbitals of the extended Koopmans' theorem were applied to reveal the nature of molecular states at conical intersections and key points on photodynamic trajectories. Potential hydroxyl group cleavage predicted with conical intersections searching turns to “swift” OH deprotonation through |π→⟩ transition along photodynamic propagations in contrast with “long” processes leading to benzene ring deformation with stable OH bond.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.