基于 V2C-MXene 的电催化剂的界面和掺杂工程,以增强整体水分离的电催化性能

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2024-10-23 DOI:10.1002/cey2.583
Yousen Wu, Jinlong Li, Guozhe Sui, Dong-Feng Chai, Yue Li, Dongxuan Guo, Dawei Chu, Kun Liang
{"title":"基于 V2C-MXene 的电催化剂的界面和掺杂工程,以增强整体水分离的电催化性能","authors":"Yousen Wu,&nbsp;Jinlong Li,&nbsp;Guozhe Sui,&nbsp;Dong-Feng Chai,&nbsp;Yue Li,&nbsp;Dongxuan Guo,&nbsp;Dawei Chu,&nbsp;Kun Liang","doi":"10.1002/cey2.583","DOIUrl":null,"url":null,"abstract":"<p>The restacking and oxidizable nature of vanadium-based carbon/nitride (V<sub>2</sub>C-MXene) poses a significant challenge. Herein, tellurium (Te)-doped V<sub>2</sub>C/V<sub>2</sub>O<sub>3</sub> electrocatalyst is constructed via mild H<sub>2</sub>O<sub>2</sub> oxidation and calcination treatments. Especially, this work rationally exploits the inherent easy oxidation characteristic associated with MXene to alter the interfacial information, thereby obtaining stable self-generated vanadium-based heterointerfaces. Meanwhile, the microetching effect of H<sub>2</sub>O<sub>2</sub> creates numerous pores to address the restacking issues. Besides, Te element doping settles the issue of awkward levels of absorption/desorption ability of intermediates. The electrocatalyst obtains an unparalleled hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 83.5 and 279.8 mV at −10 and 10 mA cm<sup>−2</sup>, respectively. In addition, the overall water-splitting device demonstrates a low cell voltage of 1.41 V to obtain 10 mA cm<sup>−2</sup>. Overall, the inherent drawbacks of MXene can be turned into benefits based on the planning strategy to create these electrocatalysts with desirable reaction kinetics.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.583","citationCount":"0","resultStr":"{\"title\":\"Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting\",\"authors\":\"Yousen Wu,&nbsp;Jinlong Li,&nbsp;Guozhe Sui,&nbsp;Dong-Feng Chai,&nbsp;Yue Li,&nbsp;Dongxuan Guo,&nbsp;Dawei Chu,&nbsp;Kun Liang\",\"doi\":\"10.1002/cey2.583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The restacking and oxidizable nature of vanadium-based carbon/nitride (V<sub>2</sub>C-MXene) poses a significant challenge. Herein, tellurium (Te)-doped V<sub>2</sub>C/V<sub>2</sub>O<sub>3</sub> electrocatalyst is constructed via mild H<sub>2</sub>O<sub>2</sub> oxidation and calcination treatments. Especially, this work rationally exploits the inherent easy oxidation characteristic associated with MXene to alter the interfacial information, thereby obtaining stable self-generated vanadium-based heterointerfaces. Meanwhile, the microetching effect of H<sub>2</sub>O<sub>2</sub> creates numerous pores to address the restacking issues. Besides, Te element doping settles the issue of awkward levels of absorption/desorption ability of intermediates. The electrocatalyst obtains an unparalleled hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 83.5 and 279.8 mV at −10 and 10 mA cm<sup>−2</sup>, respectively. In addition, the overall water-splitting device demonstrates a low cell voltage of 1.41 V to obtain 10 mA cm<sup>−2</sup>. Overall, the inherent drawbacks of MXene can be turned into benefits based on the planning strategy to create these electrocatalysts with desirable reaction kinetics.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.583\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.583\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.583","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钒基碳/氮化物(V2C-MXene)的重堆叠和可氧化特性是一项重大挑战。本文通过温和的 H2O2 氧化和煅烧处理,构建了掺杂碲(Te)的 V2C/V2O3 电催化剂。特别是,这项工作合理地利用了 MXene 固有的易氧化特性来改变界面信息,从而获得了稳定的自生成钒基异质界面。同时,H2O2 的微蚀效应产生了大量孔隙,从而解决了重新堆叠问题。此外,Te 元素的掺杂解决了中间体吸收/解吸能力水平尴尬的问题。该电催化剂在-10 和 10 mA cm-2 的过电位分别为 83.5 和 279.8 mV,从而获得了无与伦比的氢进化反应和氧进化反应。此外,整个分水装置的电池电压低至 1.41 V,即可获得 10 mA cm-2。总之,根据规划策略,可以将 MXene 的固有缺点转化为具有理想反应动力学的电催化剂的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting

The restacking and oxidizable nature of vanadium-based carbon/nitride (V2C-MXene) poses a significant challenge. Herein, tellurium (Te)-doped V2C/V2O3 electrocatalyst is constructed via mild H2O2 oxidation and calcination treatments. Especially, this work rationally exploits the inherent easy oxidation characteristic associated with MXene to alter the interfacial information, thereby obtaining stable self-generated vanadium-based heterointerfaces. Meanwhile, the microetching effect of H2O2 creates numerous pores to address the restacking issues. Besides, Te element doping settles the issue of awkward levels of absorption/desorption ability of intermediates. The electrocatalyst obtains an unparalleled hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 83.5 and 279.8 mV at −10 and 10 mA cm−2, respectively. In addition, the overall water-splitting device demonstrates a low cell voltage of 1.41 V to obtain 10 mA cm−2. Overall, the inherent drawbacks of MXene can be turned into benefits based on the planning strategy to create these electrocatalysts with desirable reaction kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 6, Number 10, October 2024 Back Cover Image, Volume 6, Number 10, October 2024 Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1