{"title":"基于 V2C-MXene 的电催化剂的界面和掺杂工程,以增强整体水分离的电催化性能","authors":"Yousen Wu, Jinlong Li, Guozhe Sui, Dong-Feng Chai, Yue Li, Dongxuan Guo, Dawei Chu, Kun Liang","doi":"10.1002/cey2.583","DOIUrl":null,"url":null,"abstract":"<p>The restacking and oxidizable nature of vanadium-based carbon/nitride (V<sub>2</sub>C-MXene) poses a significant challenge. Herein, tellurium (Te)-doped V<sub>2</sub>C/V<sub>2</sub>O<sub>3</sub> electrocatalyst is constructed via mild H<sub>2</sub>O<sub>2</sub> oxidation and calcination treatments. Especially, this work rationally exploits the inherent easy oxidation characteristic associated with MXene to alter the interfacial information, thereby obtaining stable self-generated vanadium-based heterointerfaces. Meanwhile, the microetching effect of H<sub>2</sub>O<sub>2</sub> creates numerous pores to address the restacking issues. Besides, Te element doping settles the issue of awkward levels of absorption/desorption ability of intermediates. The electrocatalyst obtains an unparalleled hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 83.5 and 279.8 mV at −10 and 10 mA cm<sup>−2</sup>, respectively. In addition, the overall water-splitting device demonstrates a low cell voltage of 1.41 V to obtain 10 mA cm<sup>−2</sup>. Overall, the inherent drawbacks of MXene can be turned into benefits based on the planning strategy to create these electrocatalysts with desirable reaction kinetics.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.583","citationCount":"0","resultStr":"{\"title\":\"Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting\",\"authors\":\"Yousen Wu, Jinlong Li, Guozhe Sui, Dong-Feng Chai, Yue Li, Dongxuan Guo, Dawei Chu, Kun Liang\",\"doi\":\"10.1002/cey2.583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The restacking and oxidizable nature of vanadium-based carbon/nitride (V<sub>2</sub>C-MXene) poses a significant challenge. Herein, tellurium (Te)-doped V<sub>2</sub>C/V<sub>2</sub>O<sub>3</sub> electrocatalyst is constructed via mild H<sub>2</sub>O<sub>2</sub> oxidation and calcination treatments. Especially, this work rationally exploits the inherent easy oxidation characteristic associated with MXene to alter the interfacial information, thereby obtaining stable self-generated vanadium-based heterointerfaces. Meanwhile, the microetching effect of H<sub>2</sub>O<sub>2</sub> creates numerous pores to address the restacking issues. Besides, Te element doping settles the issue of awkward levels of absorption/desorption ability of intermediates. The electrocatalyst obtains an unparalleled hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 83.5 and 279.8 mV at −10 and 10 mA cm<sup>−2</sup>, respectively. In addition, the overall water-splitting device demonstrates a low cell voltage of 1.41 V to obtain 10 mA cm<sup>−2</sup>. Overall, the inherent drawbacks of MXene can be turned into benefits based on the planning strategy to create these electrocatalysts with desirable reaction kinetics.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.583\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.583\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.583","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting
The restacking and oxidizable nature of vanadium-based carbon/nitride (V2C-MXene) poses a significant challenge. Herein, tellurium (Te)-doped V2C/V2O3 electrocatalyst is constructed via mild H2O2 oxidation and calcination treatments. Especially, this work rationally exploits the inherent easy oxidation characteristic associated with MXene to alter the interfacial information, thereby obtaining stable self-generated vanadium-based heterointerfaces. Meanwhile, the microetching effect of H2O2 creates numerous pores to address the restacking issues. Besides, Te element doping settles the issue of awkward levels of absorption/desorption ability of intermediates. The electrocatalyst obtains an unparalleled hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 83.5 and 279.8 mV at −10 and 10 mA cm−2, respectively. In addition, the overall water-splitting device demonstrates a low cell voltage of 1.41 V to obtain 10 mA cm−2. Overall, the inherent drawbacks of MXene can be turned into benefits based on the planning strategy to create these electrocatalysts with desirable reaction kinetics.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.