使用纠缠定向图的量子核分类器元启发式优化方案

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC ETRI Journal Pub Date : 2024-10-28 DOI:10.4218/etrij.2024-0144
Yozef Tjandra, Hendrik Santoso Sugiarto
{"title":"使用纠缠定向图的量子核分类器元启发式优化方案","authors":"Yozef Tjandra,&nbsp;Hendrik Santoso Sugiarto","doi":"10.4218/etrij.2024-0144","DOIUrl":null,"url":null,"abstract":"<p>Entanglement is crucial for achieving quantum advantages. However, in the context of quantum machine learning, existing optimization strategies for generating quantum classifier circuits often result in unentangled circuits, indicating an underutilization of the entanglement effect needed to learn complex patterns. In this study, we proposed a novel metaheuristic approach—genetic algorithm—for designing a quantum kernel classifier that incorporates expressive entanglement. This classifier utilizes a loopless entanglement-directed graph, where each directed edge represents the entanglement between the target and control qubits. The proposed method consistently outperforms classical and quantum baselines across various artificial and actual datasets, achieving improvements up to 32.4<i>%</i> and 17.5<i>%</i>, respectively, compared with the best model among all other baselines. Moreover, this method successfully reconstructs the hidden entanglement structures underlying artificial datasets. The results also demonstrate that the optimized circuits exhibit diverse entanglement variations across different datasets, indicating the versatility of the proposed approach.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 5","pages":"793-805"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0144","citationCount":"0","resultStr":"{\"title\":\"Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs\",\"authors\":\"Yozef Tjandra,&nbsp;Hendrik Santoso Sugiarto\",\"doi\":\"10.4218/etrij.2024-0144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Entanglement is crucial for achieving quantum advantages. However, in the context of quantum machine learning, existing optimization strategies for generating quantum classifier circuits often result in unentangled circuits, indicating an underutilization of the entanglement effect needed to learn complex patterns. In this study, we proposed a novel metaheuristic approach—genetic algorithm—for designing a quantum kernel classifier that incorporates expressive entanglement. This classifier utilizes a loopless entanglement-directed graph, where each directed edge represents the entanglement between the target and control qubits. The proposed method consistently outperforms classical and quantum baselines across various artificial and actual datasets, achieving improvements up to 32.4<i>%</i> and 17.5<i>%</i>, respectively, compared with the best model among all other baselines. Moreover, this method successfully reconstructs the hidden entanglement structures underlying artificial datasets. The results also demonstrate that the optimized circuits exhibit diverse entanglement variations across different datasets, indicating the versatility of the proposed approach.</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"46 5\",\"pages\":\"793-805\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0144\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2024-0144\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2024-0144","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

纠缠对于实现量子优势至关重要。然而,在量子机器学习的背景下,现有的生成量子分类器电路的优化策略往往会导致电路不纠缠,这表明没有充分利用学习复杂模式所需的纠缠效应。在这项研究中,我们提出了一种新颖的元启发式方法--遗传算法--来设计一种包含表现性纠缠的量子内核分类器。这种分类器利用无环纠缠定向图,其中每个定向边代表目标量子比特和控制量子比特之间的纠缠。在各种人工和实际数据集上,所提出的方法始终优于经典和量子基线,与所有其他基线中的最佳模型相比,分别提高了 32.4% 和 17.5%。此外,该方法还成功地重建了人工数据集底层的隐藏纠缠结构。结果还表明,优化电路在不同数据集上表现出多种纠缠变化,这表明了所提方法的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs

Entanglement is crucial for achieving quantum advantages. However, in the context of quantum machine learning, existing optimization strategies for generating quantum classifier circuits often result in unentangled circuits, indicating an underutilization of the entanglement effect needed to learn complex patterns. In this study, we proposed a novel metaheuristic approach—genetic algorithm—for designing a quantum kernel classifier that incorporates expressive entanglement. This classifier utilizes a loopless entanglement-directed graph, where each directed edge represents the entanglement between the target and control qubits. The proposed method consistently outperforms classical and quantum baselines across various artificial and actual datasets, achieving improvements up to 32.4% and 17.5%, respectively, compared with the best model among all other baselines. Moreover, this method successfully reconstructs the hidden entanglement structures underlying artificial datasets. The results also demonstrate that the optimized circuits exhibit diverse entanglement variations across different datasets, indicating the versatility of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
期刊最新文献
Issue Information Free-space quantum key distribution transmitter system using WDM filter for channel integration Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs SNN eXpress: Streamlining Low-Power AI-SoC Development With Unsigned Weight Accumulation Spiking Neural Network NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1