Bin Liu, Bing Li, Yaojing Chen, Victor Sreeram, Shuofeng Li
{"title":"Fast-MedNeXt:加速 MedNeXt 架构以提高脑肿瘤分割效率","authors":"Bin Liu, Bing Li, Yaojing Chen, Victor Sreeram, Shuofeng Li","doi":"10.1002/ima.23196","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the rapid development of medical imaging technology, 3D image segmentation technology has gradually become a mainstream method, especially in brain tumour detection and diagnosis showing its unique advantages. The technique makes full use of 3D spatial information to locate and analyze tumours more accurately, thus playing an important role in improving diagnostic accuracy, optimising treatment planning and promoting research. However, it also suffers from significant computational expenditure and delayed processing pace. In this paper, we propose an innovative optimisation scheme to address this problem. We thoroughly investigate the MedNeXt network and propose Fast-MedNeXt, which aims to increase the processing speed while maintaining accuracy. First, we introduce the partial convolution (PConv) technique, which replaces the deep convolutional layers in the network. This improvement effectively reduces computation and memory requirements while maintaining efficient feature extraction. Second, based on PConv, we propose PConv-Down and PConv-Up modules, which are applied to the up-sampling and down-sampling modules to further optimise the network structure and improve efficiency. To confirm the efficacy of the approach, we carried out a sequence of tests in the multimodal brain tumour segmentation challenge 2021 (BraTS2021). By comparing with the MedNeXt series network, the Fast-MedNeXt reduced the latency by 22.1%, 20.5%, 15.8%, and 11.4% respectively, while the average accuracy also increased by 0.475% and 0.2% respectively. These significant performance improvements demonstrate the effectiveness of Fast-MedNeXt in 3D medical image segmentation tasks and provide a new and more efficient solution for the field.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast-MedNeXt: Accelerating the MedNeXt Architecture to Improve Brain Tumour Segmentation Efficiency\",\"authors\":\"Bin Liu, Bing Li, Yaojing Chen, Victor Sreeram, Shuofeng Li\",\"doi\":\"10.1002/ima.23196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>With the rapid development of medical imaging technology, 3D image segmentation technology has gradually become a mainstream method, especially in brain tumour detection and diagnosis showing its unique advantages. The technique makes full use of 3D spatial information to locate and analyze tumours more accurately, thus playing an important role in improving diagnostic accuracy, optimising treatment planning and promoting research. However, it also suffers from significant computational expenditure and delayed processing pace. In this paper, we propose an innovative optimisation scheme to address this problem. We thoroughly investigate the MedNeXt network and propose Fast-MedNeXt, which aims to increase the processing speed while maintaining accuracy. First, we introduce the partial convolution (PConv) technique, which replaces the deep convolutional layers in the network. This improvement effectively reduces computation and memory requirements while maintaining efficient feature extraction. Second, based on PConv, we propose PConv-Down and PConv-Up modules, which are applied to the up-sampling and down-sampling modules to further optimise the network structure and improve efficiency. To confirm the efficacy of the approach, we carried out a sequence of tests in the multimodal brain tumour segmentation challenge 2021 (BraTS2021). By comparing with the MedNeXt series network, the Fast-MedNeXt reduced the latency by 22.1%, 20.5%, 15.8%, and 11.4% respectively, while the average accuracy also increased by 0.475% and 0.2% respectively. These significant performance improvements demonstrate the effectiveness of Fast-MedNeXt in 3D medical image segmentation tasks and provide a new and more efficient solution for the field.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23196\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23196","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fast-MedNeXt: Accelerating the MedNeXt Architecture to Improve Brain Tumour Segmentation Efficiency
With the rapid development of medical imaging technology, 3D image segmentation technology has gradually become a mainstream method, especially in brain tumour detection and diagnosis showing its unique advantages. The technique makes full use of 3D spatial information to locate and analyze tumours more accurately, thus playing an important role in improving diagnostic accuracy, optimising treatment planning and promoting research. However, it also suffers from significant computational expenditure and delayed processing pace. In this paper, we propose an innovative optimisation scheme to address this problem. We thoroughly investigate the MedNeXt network and propose Fast-MedNeXt, which aims to increase the processing speed while maintaining accuracy. First, we introduce the partial convolution (PConv) technique, which replaces the deep convolutional layers in the network. This improvement effectively reduces computation and memory requirements while maintaining efficient feature extraction. Second, based on PConv, we propose PConv-Down and PConv-Up modules, which are applied to the up-sampling and down-sampling modules to further optimise the network structure and improve efficiency. To confirm the efficacy of the approach, we carried out a sequence of tests in the multimodal brain tumour segmentation challenge 2021 (BraTS2021). By comparing with the MedNeXt series network, the Fast-MedNeXt reduced the latency by 22.1%, 20.5%, 15.8%, and 11.4% respectively, while the average accuracy also increased by 0.475% and 0.2% respectively. These significant performance improvements demonstrate the effectiveness of Fast-MedNeXt in 3D medical image segmentation tasks and provide a new and more efficient solution for the field.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.