为真正的量子网络准备远程状态

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-10-27 DOI:10.1038/s42005-024-01844-x
Shih-Hsuan Chen, Chan Hsu, Yu-Chien Kao, Bing-Yuan Lee, Yuan-Sung Liu, Yueh-Nan Chen, Che-Ming Li
{"title":"为真正的量子网络准备远程状态","authors":"Shih-Hsuan Chen, Chan Hsu, Yu-Chien Kao, Bing-Yuan Lee, Yuan-Sung Liu, Yueh-Nan Chen, Che-Ming Li","doi":"10.1038/s42005-024-01844-x","DOIUrl":null,"url":null,"abstract":"Quantum networks typically comprise quantum channels, repeaters, and end nodes. Remote state preparation (RSP) allows one end node to prepare the states of the other end nodes remotely. While quantum discord has recently been recognized as necessary for RSP, it does not guarantee the practical implementation of RSP in quantum networks surpasses any classical method. Herein, we theoretically introduce and experimentally study a quantum resource that we call the RSP capability. This resource validates all the static and dynamic elements required to enable genuine quantum networks where the RSP’s implementation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies, including the static resources of Einstein-Podolsky-Rosen pairs and the dynamic resources of quantum channels and repeaters. Our experiment measures the RSP capability to demonstrate the transition between classical and nonclassical RSP depending on the photon-pair qualities. It shows that quantum discord does not confirm a nonclassical RSP, but the RSP capability does. These results help reveal the quantum advantages that emerge when networking RSP is in play. The authors introduce and experimentally study a quantum resource called the remote state preparation capability. This resource validates all static and dynamic elements required to enable quantum networks where the implementation of remote state preparation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01844-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Preparing remote states for genuine quantum networks\",\"authors\":\"Shih-Hsuan Chen, Chan Hsu, Yu-Chien Kao, Bing-Yuan Lee, Yuan-Sung Liu, Yueh-Nan Chen, Che-Ming Li\",\"doi\":\"10.1038/s42005-024-01844-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum networks typically comprise quantum channels, repeaters, and end nodes. Remote state preparation (RSP) allows one end node to prepare the states of the other end nodes remotely. While quantum discord has recently been recognized as necessary for RSP, it does not guarantee the practical implementation of RSP in quantum networks surpasses any classical method. Herein, we theoretically introduce and experimentally study a quantum resource that we call the RSP capability. This resource validates all the static and dynamic elements required to enable genuine quantum networks where the RSP’s implementation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies, including the static resources of Einstein-Podolsky-Rosen pairs and the dynamic resources of quantum channels and repeaters. Our experiment measures the RSP capability to demonstrate the transition between classical and nonclassical RSP depending on the photon-pair qualities. It shows that quantum discord does not confirm a nonclassical RSP, but the RSP capability does. These results help reveal the quantum advantages that emerge when networking RSP is in play. The authors introduce and experimentally study a quantum resource called the remote state preparation capability. This resource validates all static and dynamic elements required to enable quantum networks where the implementation of remote state preparation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01844-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01844-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01844-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子网络通常由量子通道、中继器和终端节点组成。远程状态准备(RSP)允许一个终端节点远程准备其他终端节点的状态。虽然量子不和谐最近被认为是 RSP 的必要条件,但它并不能保证 RSP 在量子网络中的实际应用超越任何经典方法。在这里,我们从理论上介绍并实验研究了一种量子资源,我们称之为 RSP 能力。这种资源验证了实现真正量子网络所需的所有静态和动态元素,在这种网络中,RSP 的实现可以超越任何无纠缠和无量子比特单元策略的经典模拟,包括爱因斯坦-波多尔斯基-罗森对的静态资源以及量子信道和中继器的动态资源。我们的实验测量了 RSP 能力,展示了经典和非经典 RSP 之间的过渡,这取决于光子对的质量。实验表明,量子不和谐并不能证实非经典 RSP,但 RSP 能力却能。这些结果有助于揭示联网 RSP 发挥作用时出现的量子优势。作者介绍并实验研究了一种名为远程状态准备能力的量子资源。这种资源验证了实现量子网络所需的所有静态和动态元素,在量子网络中,远程状态准备的实现优于任何无纠缠和无比特单元策略的经典模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparing remote states for genuine quantum networks
Quantum networks typically comprise quantum channels, repeaters, and end nodes. Remote state preparation (RSP) allows one end node to prepare the states of the other end nodes remotely. While quantum discord has recently been recognized as necessary for RSP, it does not guarantee the practical implementation of RSP in quantum networks surpasses any classical method. Herein, we theoretically introduce and experimentally study a quantum resource that we call the RSP capability. This resource validates all the static and dynamic elements required to enable genuine quantum networks where the RSP’s implementation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies, including the static resources of Einstein-Podolsky-Rosen pairs and the dynamic resources of quantum channels and repeaters. Our experiment measures the RSP capability to demonstrate the transition between classical and nonclassical RSP depending on the photon-pair qualities. It shows that quantum discord does not confirm a nonclassical RSP, but the RSP capability does. These results help reveal the quantum advantages that emerge when networking RSP is in play. The authors introduce and experimentally study a quantum resource called the remote state preparation capability. This resource validates all static and dynamic elements required to enable quantum networks where the implementation of remote state preparation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Topological transition in filamentous cyanobacteria: from motion to structure Benchmarking the optimization of optical machines with the planted solutions Spontaneous flows and quantum analogies in heterogeneous active nematic films Quantum switch instabilities with an open control Time persistence of climate and carbon flux networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1