铁转化介导磷酸盐在永久冻土融化梯度上的保留

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Communications Earth & Environment Pub Date : 2024-10-29 DOI:10.1038/s43247-024-01810-z
Maximilian Barczok, Chelsea Smith, Lauren Kinsman-Costello, Monique Patzner, Casey Bryce, Andreas Kappler, David Singer, Elizabeth Herndon
{"title":"铁转化介导磷酸盐在永久冻土融化梯度上的保留","authors":"Maximilian Barczok, Chelsea Smith, Lauren Kinsman-Costello, Monique Patzner, Casey Bryce, Andreas Kappler, David Singer, Elizabeth Herndon","doi":"10.1038/s43247-024-01810-z","DOIUrl":null,"url":null,"abstract":"Phosphorus limits primary productivity in many (Sub-)Arctic ecosystems and may constrain biological carbon sequestration. Iron (III) oxides strongly bind phosphate in soils but can dissolve under flooded, reducing conditions induced by permafrost thaw and ground collapse. The ability for iron to regulate phosphate storage and solubility in thawing permafrost landscapes remains unclear. Here, iron-rich sediments containing iron oxides and organic-bound iron were incubated with or without added phosphate in soils along a permafrost thaw gradient to evaluate how iron-phosphate associations respond to thaw-induced redox shifts. Iron oxides partially dissolved and released sorbed phosphate when incubated in soils underlain by degraded permafrost. Iron complexed by organic matter remained stable but provided no phosphate binding capacity. Phosphate addition enhanced iron oxide dissolution and phosphorus concentrations in associated microbial biomass. Our study demonstrates that the capacity for iron oxides to immobilize and retain phosphate in permafrost peatlands decreases with permafrost thaw. Thawing of permafrost in peatlands decreases the immobilization and retention of phosphate with Fe oxides and releases initially sorbed phosphate, according to incubation experiments with Fe-rich sediments in soil along a permafrost thaw gradient.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01810-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Iron transformation mediates phosphate retention across a permafrost thaw gradient\",\"authors\":\"Maximilian Barczok, Chelsea Smith, Lauren Kinsman-Costello, Monique Patzner, Casey Bryce, Andreas Kappler, David Singer, Elizabeth Herndon\",\"doi\":\"10.1038/s43247-024-01810-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorus limits primary productivity in many (Sub-)Arctic ecosystems and may constrain biological carbon sequestration. Iron (III) oxides strongly bind phosphate in soils but can dissolve under flooded, reducing conditions induced by permafrost thaw and ground collapse. The ability for iron to regulate phosphate storage and solubility in thawing permafrost landscapes remains unclear. Here, iron-rich sediments containing iron oxides and organic-bound iron were incubated with or without added phosphate in soils along a permafrost thaw gradient to evaluate how iron-phosphate associations respond to thaw-induced redox shifts. Iron oxides partially dissolved and released sorbed phosphate when incubated in soils underlain by degraded permafrost. Iron complexed by organic matter remained stable but provided no phosphate binding capacity. Phosphate addition enhanced iron oxide dissolution and phosphorus concentrations in associated microbial biomass. Our study demonstrates that the capacity for iron oxides to immobilize and retain phosphate in permafrost peatlands decreases with permafrost thaw. Thawing of permafrost in peatlands decreases the immobilization and retention of phosphate with Fe oxides and releases initially sorbed phosphate, according to incubation experiments with Fe-rich sediments in soil along a permafrost thaw gradient.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01810-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01810-z\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01810-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

磷限制了许多(亚)北极生态系统的初级生产力,并可能制约生物碳固存。铁(III)氧化物与土壤中的磷酸盐紧密结合,但在永久冻土融化和地面塌陷引起的淹没、还原条件下会溶解。目前还不清楚铁在解冻的永久冻土地貌中调节磷酸盐储存和溶解度的能力。在这里,将含有铁氧化物和有机结合铁的富铁沉积物与或不与添加磷酸盐的土壤沿永久冻土融化梯度培养,以评估铁与磷酸盐的结合如何对融化引起的氧化还原转变做出反应。在退化的永久冻土层下的土壤中培养时,氧化铁部分溶解并释放出吸附的磷酸盐。与有机物络合的铁保持稳定,但不提供磷酸盐结合能力。磷酸盐的添加增强了氧化铁的溶解和相关微生物生物量中磷的浓度。我们的研究表明,氧化铁固定和保留永久冻土泥炭地中磷酸盐的能力会随着永久冻土的解冻而降低。根据沿永久冻土融化梯度对土壤中富铁沉积物进行的培养实验,泥炭地永久冻土的融化会降低氧化铁对磷酸盐的固定和保留能力,并释放最初吸附的磷酸盐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iron transformation mediates phosphate retention across a permafrost thaw gradient
Phosphorus limits primary productivity in many (Sub-)Arctic ecosystems and may constrain biological carbon sequestration. Iron (III) oxides strongly bind phosphate in soils but can dissolve under flooded, reducing conditions induced by permafrost thaw and ground collapse. The ability for iron to regulate phosphate storage and solubility in thawing permafrost landscapes remains unclear. Here, iron-rich sediments containing iron oxides and organic-bound iron were incubated with or without added phosphate in soils along a permafrost thaw gradient to evaluate how iron-phosphate associations respond to thaw-induced redox shifts. Iron oxides partially dissolved and released sorbed phosphate when incubated in soils underlain by degraded permafrost. Iron complexed by organic matter remained stable but provided no phosphate binding capacity. Phosphate addition enhanced iron oxide dissolution and phosphorus concentrations in associated microbial biomass. Our study demonstrates that the capacity for iron oxides to immobilize and retain phosphate in permafrost peatlands decreases with permafrost thaw. Thawing of permafrost in peatlands decreases the immobilization and retention of phosphate with Fe oxides and releases initially sorbed phosphate, according to incubation experiments with Fe-rich sediments in soil along a permafrost thaw gradient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
期刊最新文献
Habitat suitability models reveal extensive distribution of deep warm-water coral frameworks in the Red Sea Health benefits of reduced deforestation in the Brazilian Amazon The key role of forest disturbance in reconciling estimates of the northern carbon sink Climate change scenarios forecast increased drought exposure for terrestrial vertebrates in the contiguous United States Unveiling the devastating effect of the spring 2022 mega-heatwave on the South Asian snowpack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1