不同细胞聚集界面的形态动力学

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-10-26 DOI:10.1038/s42005-024-01840-1
Cheng-Lin Lv, Zhong-Yi Li, Shi-Da Wang, Bo Li
{"title":"不同细胞聚集界面的形态动力学","authors":"Cheng-Lin Lv, Zhong-Yi Li, Shi-Da Wang, Bo Li","doi":"10.1038/s42005-024-01840-1","DOIUrl":null,"url":null,"abstract":"Tissue interfaces are essential for development and their disruption often leads to diseases such as tumor invasion. Here, we combine experiments, theoretical modeling, and numerical simulations to quantify the morphodynamics of interface in a biphasic system composed of Madin Darby canine kidney (MDCK) and mouse myoblast (C2C12) cells. We show that cellular activity regulates the interface morphodynamics and drives wave propagation along the interface. Based on the dispersion relationship, we identify that the wave dynamics results from the activity-mediated instability of the interface and coherent flow. It is found that the topological defects accumulate around and destabilize the interface and +1/2 topological defects are more likely to aggregate in MDCK cell clusters. A biphasic active nematic theory is employed to reproduce our experimental observations and decipher the underlying mechanisms. These findings provide physical insights into the interfacial evolution that could be implicated in tissue morphogenesis and tumor invasion. Interfaces are ubiquitous in living systems and play pivotal roles in physiological and pathological processes. The authors combine experiments and numerical simulations to investigate morphodynamics of the interface between dissimilar cell aggregations.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01840-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Morphodynamics of interface between dissimilar cell aggregations\",\"authors\":\"Cheng-Lin Lv, Zhong-Yi Li, Shi-Da Wang, Bo Li\",\"doi\":\"10.1038/s42005-024-01840-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue interfaces are essential for development and their disruption often leads to diseases such as tumor invasion. Here, we combine experiments, theoretical modeling, and numerical simulations to quantify the morphodynamics of interface in a biphasic system composed of Madin Darby canine kidney (MDCK) and mouse myoblast (C2C12) cells. We show that cellular activity regulates the interface morphodynamics and drives wave propagation along the interface. Based on the dispersion relationship, we identify that the wave dynamics results from the activity-mediated instability of the interface and coherent flow. It is found that the topological defects accumulate around and destabilize the interface and +1/2 topological defects are more likely to aggregate in MDCK cell clusters. A biphasic active nematic theory is employed to reproduce our experimental observations and decipher the underlying mechanisms. These findings provide physical insights into the interfacial evolution that could be implicated in tissue morphogenesis and tumor invasion. Interfaces are ubiquitous in living systems and play pivotal roles in physiological and pathological processes. The authors combine experiments and numerical simulations to investigate morphodynamics of the interface between dissimilar cell aggregations.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01840-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01840-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01840-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

组织界面对发育至关重要,其破坏往往会导致肿瘤侵袭等疾病。在这里,我们结合实验、理论建模和数值模拟,量化了由马汀达比犬肾(MDCK)和小鼠成肌细胞(C2C12)组成的双相系统中的界面形态动力学。我们的研究表明,细胞活动调节界面形态动力学,并驱动波沿界面传播。根据弥散关系,我们确定波的动力学是由活动介导的界面不稳定性和相干流产生的。研究发现,拓扑缺陷在界面周围聚集并破坏了界面的稳定性,+1/2 拓扑缺陷更有可能聚集在 MDCK 细胞簇中。我们采用双相活性向列理论来重现我们的实验观察结果并破译其潜在机制。这些发现为可能与组织形态发生和肿瘤侵袭有关的界面演化提供了物理见解。界面在生命系统中无处不在,在生理和病理过程中发挥着关键作用。作者结合实验和数值模拟,研究了不同细胞聚集体之间界面的形态动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphodynamics of interface between dissimilar cell aggregations
Tissue interfaces are essential for development and their disruption often leads to diseases such as tumor invasion. Here, we combine experiments, theoretical modeling, and numerical simulations to quantify the morphodynamics of interface in a biphasic system composed of Madin Darby canine kidney (MDCK) and mouse myoblast (C2C12) cells. We show that cellular activity regulates the interface morphodynamics and drives wave propagation along the interface. Based on the dispersion relationship, we identify that the wave dynamics results from the activity-mediated instability of the interface and coherent flow. It is found that the topological defects accumulate around and destabilize the interface and +1/2 topological defects are more likely to aggregate in MDCK cell clusters. A biphasic active nematic theory is employed to reproduce our experimental observations and decipher the underlying mechanisms. These findings provide physical insights into the interfacial evolution that could be implicated in tissue morphogenesis and tumor invasion. Interfaces are ubiquitous in living systems and play pivotal roles in physiological and pathological processes. The authors combine experiments and numerical simulations to investigate morphodynamics of the interface between dissimilar cell aggregations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Topological transition in filamentous cyanobacteria: from motion to structure Benchmarking the optimization of optical machines with the planted solutions Spontaneous flows and quantum analogies in heterogeneous active nematic films Quantum switch instabilities with an open control Time persistence of climate and carbon flux networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1