Haonan Zhang, Xiaojing Ping, Haiying Wan, Xiaoli Luan, Fei Liu
{"title":"基于迁移学习和平均影响值的藻类含量预测","authors":"Haonan Zhang, Xiaojing Ping, Haiying Wan, Xiaoli Luan, Fei Liu","doi":"10.1016/j.chemolab.2024.105244","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the prediction accuracies of algae contents in different water bodies, this paper proposes a chlorophyll-A prediction model method based on transfer learning(TL) and mean impact value(MIV) algorithm. Firstly, we preprocess the data collected from the Huai River, including removing the missing data and standardizing the preserved data. Then, the MIV algorithm is used to reduce the dimensionality of the data and determine the input variables of the model. Based on the selected input variables, the TL algorithm is introduced to establish the chlorophyll-A prediction model. The developed method can effectively enhance the prediction accuracy, especially when the number of samples is small. The simulation results verify the effectiveness and feasibility of the proposed prediction model.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"254 ","pages":"Article 105244"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algae content prediction based on transfer learning and mean impact value\",\"authors\":\"Haonan Zhang, Xiaojing Ping, Haiying Wan, Xiaoli Luan, Fei Liu\",\"doi\":\"10.1016/j.chemolab.2024.105244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve the prediction accuracies of algae contents in different water bodies, this paper proposes a chlorophyll-A prediction model method based on transfer learning(TL) and mean impact value(MIV) algorithm. Firstly, we preprocess the data collected from the Huai River, including removing the missing data and standardizing the preserved data. Then, the MIV algorithm is used to reduce the dimensionality of the data and determine the input variables of the model. Based on the selected input variables, the TL algorithm is introduced to establish the chlorophyll-A prediction model. The developed method can effectively enhance the prediction accuracy, especially when the number of samples is small. The simulation results verify the effectiveness and feasibility of the proposed prediction model.</div></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"254 \",\"pages\":\"Article 105244\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001849\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001849","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Algae content prediction based on transfer learning and mean impact value
To improve the prediction accuracies of algae contents in different water bodies, this paper proposes a chlorophyll-A prediction model method based on transfer learning(TL) and mean impact value(MIV) algorithm. Firstly, we preprocess the data collected from the Huai River, including removing the missing data and standardizing the preserved data. Then, the MIV algorithm is used to reduce the dimensionality of the data and determine the input variables of the model. Based on the selected input variables, the TL algorithm is introduced to establish the chlorophyll-A prediction model. The developed method can effectively enhance the prediction accuracy, especially when the number of samples is small. The simulation results verify the effectiveness and feasibility of the proposed prediction model.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.