含有非塑性细粒的海洋珊瑚砂的应力膨胀行为

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Engineering Geology Pub Date : 2024-10-10 DOI:10.1016/j.enggeo.2024.107764
Xue Li , Wan-Huan Zhou , Jiankun Liu
{"title":"含有非塑性细粒的海洋珊瑚砂的应力膨胀行为","authors":"Xue Li ,&nbsp;Wan-Huan Zhou ,&nbsp;Jiankun Liu","doi":"10.1016/j.enggeo.2024.107764","DOIUrl":null,"url":null,"abstract":"<div><div>The existed understanding of stress-dilatancy behavior is predominantly based on experiments conducted with clean quartz sand, with limited research focusing on coral sand. Particularly, impacts of fines and density state on stress-dilatancy response of marine coral sand is of significant concern. This work presents a systematic investigation into these issues through meticulously controlled geotechnical tests, coupled with corresponding discussion and interpretation. Results show that at a high stress level, both pure coral sand and its mixtures consistently undergo shear contraction regardless of fines proportion and density state. However, mixtures with minimal fines experience shear contraction initially, followed by dilatancy under a medium-low stress level. Friction angle at peak state (<span><math><msub><mi>φ</mi><mi>ps</mi></msub></math></span>) and critical state (<span><math><msub><mi>φ</mi><mi>cs</mi></msub></math></span>), excess friction angle (<span><math><msub><mi>φ</mi><mi>ex</mi></msub></math></span>), and maximum dilatancy angle (<span><math><msub><mi>ψ</mi><mi>max</mi></msub></math></span>) decrease powerfully as increasing fines content. Besides, the lower and upper limits of variation for <span><math><msub><mi>φ</mi><mi>ps</mi></msub></math></span>, <span><math><msub><mi>φ</mi><mi>cs</mi></msub></math></span>, <span><math><msub><mi>φ</mi><mi>ex</mi></msub></math></span> concerning <span><math><msub><mi>ψ</mi><mi>max</mi></msub></math></span> were presented. Correlation between <span><math><msub><mi>φ</mi><mi>ex</mi></msub></math></span> and <span><math><msub><mi>ψ</mi><mi>max</mi></msub></math></span> highlights that Bolton's stress-dilatancy equation, developed for pure sand, remains applicable provided that fines content remains below the threshold value. Additionally, gray correlation result suggests that fines post the dominant influence on above behaviors, followed by density state and stress level. Finally, potential mechanism behinds the influences of fines and density state was explored from the view of particle column buckling.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"342 ","pages":"Article 107764"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress-dilatancy behavior of marine coral sand incorporating non-plastic fines\",\"authors\":\"Xue Li ,&nbsp;Wan-Huan Zhou ,&nbsp;Jiankun Liu\",\"doi\":\"10.1016/j.enggeo.2024.107764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The existed understanding of stress-dilatancy behavior is predominantly based on experiments conducted with clean quartz sand, with limited research focusing on coral sand. Particularly, impacts of fines and density state on stress-dilatancy response of marine coral sand is of significant concern. This work presents a systematic investigation into these issues through meticulously controlled geotechnical tests, coupled with corresponding discussion and interpretation. Results show that at a high stress level, both pure coral sand and its mixtures consistently undergo shear contraction regardless of fines proportion and density state. However, mixtures with minimal fines experience shear contraction initially, followed by dilatancy under a medium-low stress level. Friction angle at peak state (<span><math><msub><mi>φ</mi><mi>ps</mi></msub></math></span>) and critical state (<span><math><msub><mi>φ</mi><mi>cs</mi></msub></math></span>), excess friction angle (<span><math><msub><mi>φ</mi><mi>ex</mi></msub></math></span>), and maximum dilatancy angle (<span><math><msub><mi>ψ</mi><mi>max</mi></msub></math></span>) decrease powerfully as increasing fines content. Besides, the lower and upper limits of variation for <span><math><msub><mi>φ</mi><mi>ps</mi></msub></math></span>, <span><math><msub><mi>φ</mi><mi>cs</mi></msub></math></span>, <span><math><msub><mi>φ</mi><mi>ex</mi></msub></math></span> concerning <span><math><msub><mi>ψ</mi><mi>max</mi></msub></math></span> were presented. Correlation between <span><math><msub><mi>φ</mi><mi>ex</mi></msub></math></span> and <span><math><msub><mi>ψ</mi><mi>max</mi></msub></math></span> highlights that Bolton's stress-dilatancy equation, developed for pure sand, remains applicable provided that fines content remains below the threshold value. Additionally, gray correlation result suggests that fines post the dominant influence on above behaviors, followed by density state and stress level. Finally, potential mechanism behinds the influences of fines and density state was explored from the view of particle column buckling.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"342 \",\"pages\":\"Article 107764\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795224003648\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003648","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前对应力膨胀行为的了解主要基于对洁净石英砂的实验,对珊瑚砂的研究有限。特别是,细粒和密度状态对海洋珊瑚砂应力膨胀响应的影响非常值得关注。本研究通过精心控制的土工试验对这些问题进行了系统研究,并进行了相应的讨论和解释。结果表明,在高应力水平下,无论细粒比例和密度状态如何,纯珊瑚砂及其混合物都会持续发生剪切收缩。然而,在中低应力水平下,含有极少细粒的混合物最初会出现剪切收缩,随后出现扩张。峰值状态下的摩擦角(φps)和临界状态下的摩擦角(φcs)、多余摩擦角(φex)和最大膨胀角(ψmax)随着细粉含量的增加而急剧下降。此外,还给出了φps、φcs、φex 和ψmax 的变化下限和上限。φex与ψmax之间的相关性表明,只要细粒含量低于临界值,针对纯砂建立的博尔顿应力膨胀方程仍然适用。此外,灰色关联结果表明,细粒对上述行为的影响最大,其次是密度状态和应力水平。最后,从颗粒柱屈曲的角度探讨了细粒和密度状态影响背后的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stress-dilatancy behavior of marine coral sand incorporating non-plastic fines
The existed understanding of stress-dilatancy behavior is predominantly based on experiments conducted with clean quartz sand, with limited research focusing on coral sand. Particularly, impacts of fines and density state on stress-dilatancy response of marine coral sand is of significant concern. This work presents a systematic investigation into these issues through meticulously controlled geotechnical tests, coupled with corresponding discussion and interpretation. Results show that at a high stress level, both pure coral sand and its mixtures consistently undergo shear contraction regardless of fines proportion and density state. However, mixtures with minimal fines experience shear contraction initially, followed by dilatancy under a medium-low stress level. Friction angle at peak state (φps) and critical state (φcs), excess friction angle (φex), and maximum dilatancy angle (ψmax) decrease powerfully as increasing fines content. Besides, the lower and upper limits of variation for φps, φcs, φex concerning ψmax were presented. Correlation between φex and ψmax highlights that Bolton's stress-dilatancy equation, developed for pure sand, remains applicable provided that fines content remains below the threshold value. Additionally, gray correlation result suggests that fines post the dominant influence on above behaviors, followed by density state and stress level. Finally, potential mechanism behinds the influences of fines and density state was explored from the view of particle column buckling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
期刊最新文献
In-situ and experimental investigations of the failure characteristics of surrounding rock through granites with biotite interlayers in a tunnel Evolution characteristics of mining-induced fractures in overburden strata under close-multi coal seams mining based on optical fiber monitoring Evaluating the chain of uncertainties in the 3D geological modelling workflow Thermal and mechanical impact of artificial ground-freezing on deep excavation stability in Nakdong River Deltaic deposits Large-scale geohazards risk of submarine landslides considering the subsea cables vulnerability: A case study from the northern continental slopes of South China Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1