Victoria G. Grossman , Maxim S. Molokeev , Bair G. Bazarov
{"title":"新型 Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) 钼酸盐的合成及其结构、热学和电学特性研究","authors":"Victoria G. Grossman , Maxim S. Molokeev , Bair G. Bazarov","doi":"10.1016/j.solidstatesciences.2024.107725","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional solid-state synthesizing method was employed to prepare Tl<sub>5-<em>x</em></sub>K<sub><em>x</em></sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> (<em>x</em> = 0; 0.1; 0.2; 1; 2) ceramics. Structural characterization was performed through the Rietveld method on the X-ray powder diffraction data. The unit cell parameters are defined for Tl<sub>5-<em>x</em></sub>K<sub><em>x</em></sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> (<em>x</em> = 0; 0.1; 0.2; 1; 2). Impedance spectra were measured at temperatures ranging from 300 to 800 K, covering a frequency range of 1 Hz to 1 MHz. The results show that the electrical conductivity decreases with an incrementing in the <em>x</em> value in the range of <em>x</em> = 0.1–2.0. Tl<sub>4.9</sub>K<sub>0.1</sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> has the best ionic conductivity of this series of molybdates (1.31 × 10<sup>−3</sup> S cm<sup>−1</sup><sub>)</sub>, and Tl<sub>5</sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> has the lowest conductivity (5.51 × 10<sup>−4</sup> S cm<sup>−1</sup><sub>)</sub>. Activation energy was found out to decrease from 1.32 eV for Tl<sub>5</sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> to 0.92 eV for Tl<sub>4.9</sub>K<sub>0.1</sub>LuZr(MoO<sub>4</sub>)<sub>6.</sub></div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107725"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and investigation of the structure, thermal and electrical properties of new Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) molybdates\",\"authors\":\"Victoria G. Grossman , Maxim S. Molokeev , Bair G. Bazarov\",\"doi\":\"10.1016/j.solidstatesciences.2024.107725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The traditional solid-state synthesizing method was employed to prepare Tl<sub>5-<em>x</em></sub>K<sub><em>x</em></sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> (<em>x</em> = 0; 0.1; 0.2; 1; 2) ceramics. Structural characterization was performed through the Rietveld method on the X-ray powder diffraction data. The unit cell parameters are defined for Tl<sub>5-<em>x</em></sub>K<sub><em>x</em></sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> (<em>x</em> = 0; 0.1; 0.2; 1; 2). Impedance spectra were measured at temperatures ranging from 300 to 800 K, covering a frequency range of 1 Hz to 1 MHz. The results show that the electrical conductivity decreases with an incrementing in the <em>x</em> value in the range of <em>x</em> = 0.1–2.0. Tl<sub>4.9</sub>K<sub>0.1</sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> has the best ionic conductivity of this series of molybdates (1.31 × 10<sup>−3</sup> S cm<sup>−1</sup><sub>)</sub>, and Tl<sub>5</sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> has the lowest conductivity (5.51 × 10<sup>−4</sup> S cm<sup>−1</sup><sub>)</sub>. Activation energy was found out to decrease from 1.32 eV for Tl<sub>5</sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> to 0.92 eV for Tl<sub>4.9</sub>K<sub>0.1</sub>LuZr(MoO<sub>4</sub>)<sub>6.</sub></div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"157 \",\"pages\":\"Article 107725\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255824002905\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824002905","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
采用传统固态合成法制备了 Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) 陶瓷。通过对 X 射线粉末衍射数据的里特维尔德法进行了结构表征。确定了 Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) 的单胞参数。在 300 至 800 K 的温度范围内测量了阻抗谱,频率范围为 1 Hz 至 1 MHz。结果表明,在 x = 0.1-2.0 的范围内,电导率随着 x 值的增加而降低。在这一系列钼酸盐中,Tl4.9K0.1LuZr(MoO4)6 的离子导电率最好(1.31 × 10-3 S cm-1),而 Tl5LuZr(MoO4)6 的导电率最低(5.51 × 10-4 S cm-1)。活化能从 Tl5LuZr(MoO4)6 的 1.32 eV 下降到 Tl4.9K0.1LuZr(MoO4)6 的 0.92 eV。
Synthesis and investigation of the structure, thermal and electrical properties of new Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) molybdates
The traditional solid-state synthesizing method was employed to prepare Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) ceramics. Structural characterization was performed through the Rietveld method on the X-ray powder diffraction data. The unit cell parameters are defined for Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2). Impedance spectra were measured at temperatures ranging from 300 to 800 K, covering a frequency range of 1 Hz to 1 MHz. The results show that the electrical conductivity decreases with an incrementing in the x value in the range of x = 0.1–2.0. Tl4.9K0.1LuZr(MoO4)6 has the best ionic conductivity of this series of molybdates (1.31 × 10−3 S cm−1), and Tl5LuZr(MoO4)6 has the lowest conductivity (5.51 × 10−4 S cm−1). Activation energy was found out to decrease from 1.32 eV for Tl5LuZr(MoO4)6 to 0.92 eV for Tl4.9K0.1LuZr(MoO4)6.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.