Jiufu Chen , Binghao Wang , Jianzhang Li, Junbo Zhong
{"title":"H2/N2 混合气处理诱导具有可调氧空位的 TiO2 光催化性能增强","authors":"Jiufu Chen , Binghao Wang , Jianzhang Li, Junbo Zhong","doi":"10.1016/j.solidstatesciences.2024.107726","DOIUrl":null,"url":null,"abstract":"<div><div>Surface treatment can effectively modulate the surface properties of a photocatalyst to hasten the separation and transfer of photoinduced charges, ultimately achieving high photocatalytic performance. Herein, surface treatment of anatase-phase TiO<sub>2</sub> prepared by a hydrothermal method was performed under H<sub>2</sub>/N<sub>2</sub> mixed atmosphere. The experimental results demonstrate that roasting TiO<sub>2</sub> in a H<sub>2</sub>/N<sub>2</sub> atmosphere can effectively reduce partial Ti<sup>4+</sup> to Ti<sup>3+</sup>, thereby facilitating the production of tunable oxygen vacancies (OVs) by disrupting Ti-O-Ti bonds. OVs can construct defective energy levels to bring about a decrease in the bandgap of TiO<sub>2</sub> and an extension of light absorption range. Moreover, OVs remarkedly improve the separation of photoinduced charges of TiO<sub>2</sub> and accelerate the photocatalytic reaction as active sites. The photocatalytic experimental results demonstrate that TiO<sub>2</sub> exhibits the highest performance when roasting TiO<sub>2</sub> in a H<sub>2</sub>/N<sub>2</sub> atmosphere for 2 h, and the photocatalytic degradation rate constant of rhodamine B (RhB) and tetracycline (TC) on this sample under simulated solar light irradiation is 2.24 and 1.11 times higher than that on the reference TiO<sub>2</sub>, respectively. These findings provide valuable insights for designing highly efficient photocatalysts for effective water pollution treatment.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107726"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photocatalytic performance of TiO2 with tunable oxygen vacancies induced by H2/N2 mixture treatment\",\"authors\":\"Jiufu Chen , Binghao Wang , Jianzhang Li, Junbo Zhong\",\"doi\":\"10.1016/j.solidstatesciences.2024.107726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surface treatment can effectively modulate the surface properties of a photocatalyst to hasten the separation and transfer of photoinduced charges, ultimately achieving high photocatalytic performance. Herein, surface treatment of anatase-phase TiO<sub>2</sub> prepared by a hydrothermal method was performed under H<sub>2</sub>/N<sub>2</sub> mixed atmosphere. The experimental results demonstrate that roasting TiO<sub>2</sub> in a H<sub>2</sub>/N<sub>2</sub> atmosphere can effectively reduce partial Ti<sup>4+</sup> to Ti<sup>3+</sup>, thereby facilitating the production of tunable oxygen vacancies (OVs) by disrupting Ti-O-Ti bonds. OVs can construct defective energy levels to bring about a decrease in the bandgap of TiO<sub>2</sub> and an extension of light absorption range. Moreover, OVs remarkedly improve the separation of photoinduced charges of TiO<sub>2</sub> and accelerate the photocatalytic reaction as active sites. The photocatalytic experimental results demonstrate that TiO<sub>2</sub> exhibits the highest performance when roasting TiO<sub>2</sub> in a H<sub>2</sub>/N<sub>2</sub> atmosphere for 2 h, and the photocatalytic degradation rate constant of rhodamine B (RhB) and tetracycline (TC) on this sample under simulated solar light irradiation is 2.24 and 1.11 times higher than that on the reference TiO<sub>2</sub>, respectively. These findings provide valuable insights for designing highly efficient photocatalysts for effective water pollution treatment.</div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"157 \",\"pages\":\"Article 107726\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255824002917\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824002917","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Enhanced photocatalytic performance of TiO2 with tunable oxygen vacancies induced by H2/N2 mixture treatment
Surface treatment can effectively modulate the surface properties of a photocatalyst to hasten the separation and transfer of photoinduced charges, ultimately achieving high photocatalytic performance. Herein, surface treatment of anatase-phase TiO2 prepared by a hydrothermal method was performed under H2/N2 mixed atmosphere. The experimental results demonstrate that roasting TiO2 in a H2/N2 atmosphere can effectively reduce partial Ti4+ to Ti3+, thereby facilitating the production of tunable oxygen vacancies (OVs) by disrupting Ti-O-Ti bonds. OVs can construct defective energy levels to bring about a decrease in the bandgap of TiO2 and an extension of light absorption range. Moreover, OVs remarkedly improve the separation of photoinduced charges of TiO2 and accelerate the photocatalytic reaction as active sites. The photocatalytic experimental results demonstrate that TiO2 exhibits the highest performance when roasting TiO2 in a H2/N2 atmosphere for 2 h, and the photocatalytic degradation rate constant of rhodamine B (RhB) and tetracycline (TC) on this sample under simulated solar light irradiation is 2.24 and 1.11 times higher than that on the reference TiO2, respectively. These findings provide valuable insights for designing highly efficient photocatalysts for effective water pollution treatment.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.