平流层中的二氧化硫来源

IF 2.3 3区 物理与天体物理 Q2 OPTICS Journal of Quantitative Spectroscopy & Radiative Transfer Pub Date : 2024-10-16 DOI:10.1016/j.jqsrt.2024.109217
Peter F. Bernath , Manish Bhusal
{"title":"平流层中的二氧化硫来源","authors":"Peter F. Bernath ,&nbsp;Manish Bhusal","doi":"10.1016/j.jqsrt.2024.109217","DOIUrl":null,"url":null,"abstract":"<div><div>Version 5.2 SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> data from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) in low Earth orbit are used to determine global altitude–latitude abundance distributions. This new data set has SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> volume mixing ratios (VMRs) from 11.5 to 39.5 km in altitude from February 2004 to July 2023. The average background SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> abundance is plotted along with the abundance for four different seasons. These distributions show that there is a stratospheric source of SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> that comes from the decline in sulfate aerosol abundance with increasing altitude. The visible and near-infrared photolysis of sulfuric acid (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>SO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>) is the primary source of SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the middle stratosphere. There is also a source of SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the upper stratosphere and mesosphere. The Brewer-Dobson circulation enhances SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> at higher altitudes, particularly by descent near the winter pole. The elevated abundance of SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> near the poles originates from meteoric sources as well as UV photolysis of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>SO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> in the mesosphere. Large volcanic eruptions release sulfur dioxide (SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) into the lower stratosphere, where it persists for several months.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"330 ","pages":"Article 109217"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur dioxide sources in the stratosphere\",\"authors\":\"Peter F. Bernath ,&nbsp;Manish Bhusal\",\"doi\":\"10.1016/j.jqsrt.2024.109217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Version 5.2 SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> data from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) in low Earth orbit are used to determine global altitude–latitude abundance distributions. This new data set has SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> volume mixing ratios (VMRs) from 11.5 to 39.5 km in altitude from February 2004 to July 2023. The average background SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> abundance is plotted along with the abundance for four different seasons. These distributions show that there is a stratospheric source of SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> that comes from the decline in sulfate aerosol abundance with increasing altitude. The visible and near-infrared photolysis of sulfuric acid (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>SO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>) is the primary source of SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the middle stratosphere. There is also a source of SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the upper stratosphere and mesosphere. The Brewer-Dobson circulation enhances SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> at higher altitudes, particularly by descent near the winter pole. The elevated abundance of SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> near the poles originates from meteoric sources as well as UV photolysis of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>SO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> in the mesosphere. Large volcanic eruptions release sulfur dioxide (SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) into the lower stratosphere, where it persists for several months.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"330 \",\"pages\":\"Article 109217\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003248\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003248","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

5.2 版二氧化硫数据来自低地球轨道上的大气化学实验傅立叶变换光谱仪 (ACE-FTS),用于确定全球高度-纬度丰度分布。这一新数据集包含 2004 年 2 月至 2023 年 7 月期间 11.5 至 39.5 公里高度的二氧化硫体积混合比。绘制了平均背景二氧化硫丰度和四个不同季节的丰度。这些分布表明,平流层中的二氧化硫来源于硫酸盐气溶胶丰度随高度增加而下降。硫酸(H2SO4)的可见光和近红外光解是中平流层二氧化硫的主要来源。上平流层和中间层也有二氧化硫的来源。布鲁尔-多布森环流增强了高空的二氧化硫,尤其是在冬季极点附近的下降过程中。极地附近丰富的二氧化硫来源于陨石以及中间层中 H2SO4 的紫外线光解。大型火山爆发会将二氧化硫(SO2)释放到低平流层,并在那里持续几个月。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sulfur dioxide sources in the stratosphere
Version 5.2 SO2 data from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) in low Earth orbit are used to determine global altitude–latitude abundance distributions. This new data set has SO2 volume mixing ratios (VMRs) from 11.5 to 39.5 km in altitude from February 2004 to July 2023. The average background SO2 abundance is plotted along with the abundance for four different seasons. These distributions show that there is a stratospheric source of SO2 that comes from the decline in sulfate aerosol abundance with increasing altitude. The visible and near-infrared photolysis of sulfuric acid (H2SO4) is the primary source of SO2 in the middle stratosphere. There is also a source of SO2 in the upper stratosphere and mesosphere. The Brewer-Dobson circulation enhances SO2 at higher altitudes, particularly by descent near the winter pole. The elevated abundance of SO2 near the poles originates from meteoric sources as well as UV photolysis of H2SO4 in the mesosphere. Large volcanic eruptions release sulfur dioxide (SO2) into the lower stratosphere, where it persists for several months.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
期刊最新文献
Editorial Board Computational toolbox for scattering of focused light from flattened or elongated particles using spheroidal wavefunctions Hyperfine structure odd-parity configurations of the terbium atom, Part I: Levels with small J Complex refractive index from scattering measurements for an acoustically levitated single particle Comparative analysis of theories accounting for quantum effects in plasmonic nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1