Shadia A. Alzurqani , Hamdi A. Zurqani , Don White Jr. , Kathleen Bridges , Shawn Jackson
{"title":"谷歌地球引擎应用于绘制和监测干旱模式和趋势:美国阿肯色州案例研究","authors":"Shadia A. Alzurqani , Hamdi A. Zurqani , Don White Jr. , Kathleen Bridges , Shawn Jackson","doi":"10.1016/j.ecolind.2024.112759","DOIUrl":null,"url":null,"abstract":"<div><div>Drought is a prolonged dry period that can have severe impacts on the environment, human health, economies, agriculture, and energy resources. It can lead to water shortages, ruin crops, dry out forests, and reduce the availability of food and water for wildlife and livestock. The primary objectives of this study are to: 1) quantify the variability and distributions of drought patterns in Arkansas, United States (US), 2) use remotely sensed indices to investigate the correlation between drought and vegetation cover in the area, and 3) develop a cloud-based framework (user-friendly app) to facilitate the assessment of drought impact in Arkansas over the past decades. A correlation analysis was also performed between the Vegetation Health Index (VHI) and meteorological indices to better understand the impact of meteorological drought on vegetation stress. In addition, Mann-Kendall trend analysis was used to assess trends in meteorological drought indices. The results indicate that drought is most prevalent during March and August months. The results of this study revealed that approximately 31% of the study area fell under the four drought classes (i.e., 1% Extreme drought, 4% Severe drought, 9% moderate drought, and 19% mild drought), with spring and the growing season experiencing moderate drought, particularly in agricultural areas, most notably within the Mississippi Alluvial Valley Plain at both state and county levels. In August, approximately 31% of the study area fell under the Four drought classes (i.e., 1% Extreme drought, 4% Severe drought, 9% moderate drought, and 19% mild drought), with spring and the growing season experiencing moderate drought, particularly in agricultural areas, most notably within the Mississippi Alluvial Valley Plain at both state and county levels. This study provides an essential foundation for policymakers, environmental scientists, and agricultural stakeholders aiming to mitigate drought impacts and safeguard against future climate uncertainties.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"168 ","pages":"Article 112759"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Google Earth Engine application for mapping and monitoring drought patterns and trends: A case study in Arkansas, USA\",\"authors\":\"Shadia A. Alzurqani , Hamdi A. Zurqani , Don White Jr. , Kathleen Bridges , Shawn Jackson\",\"doi\":\"10.1016/j.ecolind.2024.112759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drought is a prolonged dry period that can have severe impacts on the environment, human health, economies, agriculture, and energy resources. It can lead to water shortages, ruin crops, dry out forests, and reduce the availability of food and water for wildlife and livestock. The primary objectives of this study are to: 1) quantify the variability and distributions of drought patterns in Arkansas, United States (US), 2) use remotely sensed indices to investigate the correlation between drought and vegetation cover in the area, and 3) develop a cloud-based framework (user-friendly app) to facilitate the assessment of drought impact in Arkansas over the past decades. A correlation analysis was also performed between the Vegetation Health Index (VHI) and meteorological indices to better understand the impact of meteorological drought on vegetation stress. In addition, Mann-Kendall trend analysis was used to assess trends in meteorological drought indices. The results indicate that drought is most prevalent during March and August months. The results of this study revealed that approximately 31% of the study area fell under the four drought classes (i.e., 1% Extreme drought, 4% Severe drought, 9% moderate drought, and 19% mild drought), with spring and the growing season experiencing moderate drought, particularly in agricultural areas, most notably within the Mississippi Alluvial Valley Plain at both state and county levels. In August, approximately 31% of the study area fell under the Four drought classes (i.e., 1% Extreme drought, 4% Severe drought, 9% moderate drought, and 19% mild drought), with spring and the growing season experiencing moderate drought, particularly in agricultural areas, most notably within the Mississippi Alluvial Valley Plain at both state and county levels. This study provides an essential foundation for policymakers, environmental scientists, and agricultural stakeholders aiming to mitigate drought impacts and safeguard against future climate uncertainties.</div></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":\"168 \",\"pages\":\"Article 112759\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X24012160\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24012160","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Google Earth Engine application for mapping and monitoring drought patterns and trends: A case study in Arkansas, USA
Drought is a prolonged dry period that can have severe impacts on the environment, human health, economies, agriculture, and energy resources. It can lead to water shortages, ruin crops, dry out forests, and reduce the availability of food and water for wildlife and livestock. The primary objectives of this study are to: 1) quantify the variability and distributions of drought patterns in Arkansas, United States (US), 2) use remotely sensed indices to investigate the correlation between drought and vegetation cover in the area, and 3) develop a cloud-based framework (user-friendly app) to facilitate the assessment of drought impact in Arkansas over the past decades. A correlation analysis was also performed between the Vegetation Health Index (VHI) and meteorological indices to better understand the impact of meteorological drought on vegetation stress. In addition, Mann-Kendall trend analysis was used to assess trends in meteorological drought indices. The results indicate that drought is most prevalent during March and August months. The results of this study revealed that approximately 31% of the study area fell under the four drought classes (i.e., 1% Extreme drought, 4% Severe drought, 9% moderate drought, and 19% mild drought), with spring and the growing season experiencing moderate drought, particularly in agricultural areas, most notably within the Mississippi Alluvial Valley Plain at both state and county levels. In August, approximately 31% of the study area fell under the Four drought classes (i.e., 1% Extreme drought, 4% Severe drought, 9% moderate drought, and 19% mild drought), with spring and the growing season experiencing moderate drought, particularly in agricultural areas, most notably within the Mississippi Alluvial Valley Plain at both state and county levels. This study provides an essential foundation for policymakers, environmental scientists, and agricultural stakeholders aiming to mitigate drought impacts and safeguard against future climate uncertainties.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.