Yan Ma , Chuang Cui , Qing-hua Zhang , Kun Tang , Zhen-yu Cheng
{"title":"考虑多裂纹影响的 Q420qFNH 耐候钢焊接接头疲劳寿命预测","authors":"Yan Ma , Chuang Cui , Qing-hua Zhang , Kun Tang , Zhen-yu Cheng","doi":"10.1016/j.ijfatigue.2024.108665","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple semi-elliptical cracks frequently develop at the weld toes of welded joints. These interfering multiple cracks significantly accelerate crack growth rates and reduce the fatigue life of a welded joint compared to a single crack. This study proposes a method for predicting the fatigue life of a welded joint with multiple cracks, considering weld toe amplification effect, multiple crack interference amplification effect, and crack closure effect. The method is validated through fatigue tests on Q420qFNH weathering steel welded joints. The main factors influencing the interference amplification effect are investigated, and theoretical formulas for the interference amplification factor of the stress intensity factor are derived using the finite element method and the superposition principle. The initiation, aggregation, and morphological evolution during the propagation process of multiple cracks is accurately simulated, and the fatigue life of both cruciform-welded and butt-welded joints is predicted. Additionally, a quantitative analysis is conducted to assess the impact of the number of fatigue cracks on fatigue strength. The results indicate that the interference amplification effect of cracks depends on their distance and mainly affects the surface point where the crack front is closest. The proposed fatigue life prediction method can accurately estimate the fatigue life of Q420qFNH steel welded joints considering the effect of multi-cracks. The interference and coalescence of multiple cracks significantly reduce the fatigue life of welded joints. An increase in the number of fatigue cracks notably decreases the fatigue strength.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108665"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue life prediction for Q420qFNH weathering steel welded joints considering the effect of multiple cracks\",\"authors\":\"Yan Ma , Chuang Cui , Qing-hua Zhang , Kun Tang , Zhen-yu Cheng\",\"doi\":\"10.1016/j.ijfatigue.2024.108665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multiple semi-elliptical cracks frequently develop at the weld toes of welded joints. These interfering multiple cracks significantly accelerate crack growth rates and reduce the fatigue life of a welded joint compared to a single crack. This study proposes a method for predicting the fatigue life of a welded joint with multiple cracks, considering weld toe amplification effect, multiple crack interference amplification effect, and crack closure effect. The method is validated through fatigue tests on Q420qFNH weathering steel welded joints. The main factors influencing the interference amplification effect are investigated, and theoretical formulas for the interference amplification factor of the stress intensity factor are derived using the finite element method and the superposition principle. The initiation, aggregation, and morphological evolution during the propagation process of multiple cracks is accurately simulated, and the fatigue life of both cruciform-welded and butt-welded joints is predicted. Additionally, a quantitative analysis is conducted to assess the impact of the number of fatigue cracks on fatigue strength. The results indicate that the interference amplification effect of cracks depends on their distance and mainly affects the surface point where the crack front is closest. The proposed fatigue life prediction method can accurately estimate the fatigue life of Q420qFNH steel welded joints considering the effect of multi-cracks. The interference and coalescence of multiple cracks significantly reduce the fatigue life of welded joints. An increase in the number of fatigue cracks notably decreases the fatigue strength.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108665\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005243\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005243","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fatigue life prediction for Q420qFNH weathering steel welded joints considering the effect of multiple cracks
Multiple semi-elliptical cracks frequently develop at the weld toes of welded joints. These interfering multiple cracks significantly accelerate crack growth rates and reduce the fatigue life of a welded joint compared to a single crack. This study proposes a method for predicting the fatigue life of a welded joint with multiple cracks, considering weld toe amplification effect, multiple crack interference amplification effect, and crack closure effect. The method is validated through fatigue tests on Q420qFNH weathering steel welded joints. The main factors influencing the interference amplification effect are investigated, and theoretical formulas for the interference amplification factor of the stress intensity factor are derived using the finite element method and the superposition principle. The initiation, aggregation, and morphological evolution during the propagation process of multiple cracks is accurately simulated, and the fatigue life of both cruciform-welded and butt-welded joints is predicted. Additionally, a quantitative analysis is conducted to assess the impact of the number of fatigue cracks on fatigue strength. The results indicate that the interference amplification effect of cracks depends on their distance and mainly affects the surface point where the crack front is closest. The proposed fatigue life prediction method can accurately estimate the fatigue life of Q420qFNH steel welded joints considering the effect of multi-cracks. The interference and coalescence of multiple cracks significantly reduce the fatigue life of welded joints. An increase in the number of fatigue cracks notably decreases the fatigue strength.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.