基于有限元法的小冲孔疲劳试验方法的开发

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Fatigue Pub Date : 2024-10-18 DOI:10.1016/j.ijfatigue.2024.108656
Sangyeop Kim , Yong Hwi Kim , Taeksang Lee , Moon Ki Kim
{"title":"基于有限元法的小冲孔疲劳试验方法的开发","authors":"Sangyeop Kim ,&nbsp;Yong Hwi Kim ,&nbsp;Taeksang Lee ,&nbsp;Moon Ki Kim","doi":"10.1016/j.ijfatigue.2024.108656","DOIUrl":null,"url":null,"abstract":"<div><div>The Small Punch Test (SPT) is a method of evaluating the mechanical properties of metallic materials that overcomes the limitations of the Uniaxial Test (UT), a traditional method of testing. Unlike UT, which provides strain data for each stress, SPT provides displacement data for each load. Therefore, SPT must be converted to UT to evaluate the mechanical properties of materials. However, SPT and UT employ disparate loading mechanisms. The difficulty in converting SPT to UT, which stems from the disparate loading mechanisms, has thus far limited SPT to mechanical property evaluation areas such as tensile and creep. This paper, therefore, aims to extend SPT to the fatigue domain, which is currently limited to the tensile and creep domains. The fatigue properties of metallic materials were evaluated based on the Finite Element Method (FEM) for the Small Punch Fatigue Test (SPFT). Moreover, the fatigue properties derived from the FEM for SPFT were converted to Uniaxial Fatigue Test (UFT) by employing the equivalent equation. Finally, an S-N curve was constructed based on SPFT and was validated by comparison with the same curve constructed based on UFT.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108656"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of the small punch fatigue test method based on the finite element method\",\"authors\":\"Sangyeop Kim ,&nbsp;Yong Hwi Kim ,&nbsp;Taeksang Lee ,&nbsp;Moon Ki Kim\",\"doi\":\"10.1016/j.ijfatigue.2024.108656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Small Punch Test (SPT) is a method of evaluating the mechanical properties of metallic materials that overcomes the limitations of the Uniaxial Test (UT), a traditional method of testing. Unlike UT, which provides strain data for each stress, SPT provides displacement data for each load. Therefore, SPT must be converted to UT to evaluate the mechanical properties of materials. However, SPT and UT employ disparate loading mechanisms. The difficulty in converting SPT to UT, which stems from the disparate loading mechanisms, has thus far limited SPT to mechanical property evaluation areas such as tensile and creep. This paper, therefore, aims to extend SPT to the fatigue domain, which is currently limited to the tensile and creep domains. The fatigue properties of metallic materials were evaluated based on the Finite Element Method (FEM) for the Small Punch Fatigue Test (SPFT). Moreover, the fatigue properties derived from the FEM for SPFT were converted to Uniaxial Fatigue Test (UFT) by employing the equivalent equation. Finally, an S-N curve was constructed based on SPFT and was validated by comparison with the same curve constructed based on UFT.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108656\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005152\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005152","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

小冲压试验(SPT)是一种评估金属材料机械性能的方法,它克服了传统测试方法单轴试验(UT)的局限性。UT 为每个应力提供应变数据,而 SPT 则为每个载荷提供位移数据。因此,必须将 SPT 转换为 UT,才能评估材料的机械性能。然而,SPT 和 UT 采用不同的加载机制。将 SPT 转换为 UT 的困难源于不同的加载机制,因此迄今为止,SPT 只局限于拉伸和蠕变等机械性能评估领域。因此,本文旨在将目前仅限于拉伸和蠕变领域的 SPT 扩展到疲劳领域。基于有限元法(FEM)的小冲压疲劳试验(SPFT)对金属材料的疲劳特性进行了评估。此外,还利用等效方程将有限元法得出的 SPFT 疲劳特性转换为单轴疲劳试验(UFT)。最后,根据 SPFT 构建了 S-N 曲线,并与根据 UFT 构建的相同曲线进行了比较验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of the small punch fatigue test method based on the finite element method
The Small Punch Test (SPT) is a method of evaluating the mechanical properties of metallic materials that overcomes the limitations of the Uniaxial Test (UT), a traditional method of testing. Unlike UT, which provides strain data for each stress, SPT provides displacement data for each load. Therefore, SPT must be converted to UT to evaluate the mechanical properties of materials. However, SPT and UT employ disparate loading mechanisms. The difficulty in converting SPT to UT, which stems from the disparate loading mechanisms, has thus far limited SPT to mechanical property evaluation areas such as tensile and creep. This paper, therefore, aims to extend SPT to the fatigue domain, which is currently limited to the tensile and creep domains. The fatigue properties of metallic materials were evaluated based on the Finite Element Method (FEM) for the Small Punch Fatigue Test (SPFT). Moreover, the fatigue properties derived from the FEM for SPFT were converted to Uniaxial Fatigue Test (UFT) by employing the equivalent equation. Finally, an S-N curve was constructed based on SPFT and was validated by comparison with the same curve constructed based on UFT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
期刊最新文献
Corrosion fatigue behavior of cast iron in simulated combustion product solutions of ammonia and methanol fuels A new nonlinear fatigue cumulative damage model based on load interaction and strength degradation Damage mechanisms of Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes Effect of three-stage heat treatment on the composite waveform and variable amplitude fatigue properties of TC4 titanium alloy pulsed laser-arc hybrid welded joints A strain-interfaced digital twin solution for corner fatigue crack growth using Bayesian inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1