Akshay Arjun , H.B. Premkumar , Lalitha S. Jairam , S.C. Sharma , H. Nagabhushana , G.P. Darshan
{"title":"利用具有光敏性和热稳定性的发光 Ba2ZnWO6:Eu3+、M+(M+= Na、K 和 Li)纳米荧光粉,对牙齿裂缝综合症进行有针对性的无创、无染色可视化治疗","authors":"Akshay Arjun , H.B. Premkumar , Lalitha S. Jairam , S.C. Sharma , H. Nagabhushana , G.P. Darshan","doi":"10.1016/j.mtnano.2024.100531","DOIUrl":null,"url":null,"abstract":"<div><div>The cracked tooth syndrome poses a significant challenge in dentistry, thereafter untreated cases often lead to severe complications, such as pulpitis or complete tooth fracture, ultimately contributing to tooth loss. However, the conventional diagnostic methods to visualize microcracks in the tooth suffer from severe drawbacks, such as inaccurate cold stimulation, discomfort with probing, impractical staining techniques, and difficulty in distinguishing harmless craze lines from pathological cracks. To address this challenge, for the first time, we are proposing a novel approach by utilizing luminescent Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (3 mol %), K<sup>+</sup> (1 wt %) nanophosphor for improved imaging and diagnosis of cracked tooth syndrome. Herein, the double perovskite structured Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (1–11 mol %), M<sup>+</sup> (M<sup>+</sup> = Na, K, and Li (1 wt %)) nanophosphors were synthesized via the sonochemical route. The photoluminescence emission spectra of the prepared Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (1–11 mol %) nanophosphors displaying distinct peaks at 583, 595, 613, 662, and 720 nm, which ascribed to transitions from state <sup>5</sup>D<sub>0</sub> to <sup>7</sup>F<sub>J</sub> (J = 1–4) state of the Eu<sup>3+</sup> ions, respectively. By adopting a strategic charge compensation mechanism, the enhancement in the luminescence emission intensity of about 1.5-fold was achieved after co-doping K<sup>+</sup> (1 wt %) with Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (3 mol %) nanophosphor. The photometric studies of the phosphors portray their orange-red emission with excellent quantum efficiency (82.52 %), and color purity (∼ 99 %). The emission intensity was sustained up to 73.71 % at 473 K, indicating excellent thermal stability of the phosphor. The <em>in vitro</em> cytotoxicity assessments of the optimized nanophosphor demonstrated its biocompatibility on normal non-malignant oral fibroblasts. The visualized microcracks in the tooth using optimized Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (3 mol %), K<sup>+</sup> (1 wt %) nanophosphor under UV excitation of UV 365 and 395 nm light revealed the orientation of microcracks, crack width, depth of the crack, and microcrack branching without any stain. The aforementioned results demonstrated that the proposed methodology paves the way for a new avenue in dental imaging technology with the potential to revolutionize and improve patient care outcomes.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100531"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging photosensitive and thermally stable luminescent Ba2ZnWO6:Eu3+, M+ (M+= Na, K , and Li) nanophosphor for targeted non-invasive and stain-free visualization of cracked tooth syndrome\",\"authors\":\"Akshay Arjun , H.B. Premkumar , Lalitha S. Jairam , S.C. Sharma , H. Nagabhushana , G.P. Darshan\",\"doi\":\"10.1016/j.mtnano.2024.100531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cracked tooth syndrome poses a significant challenge in dentistry, thereafter untreated cases often lead to severe complications, such as pulpitis or complete tooth fracture, ultimately contributing to tooth loss. However, the conventional diagnostic methods to visualize microcracks in the tooth suffer from severe drawbacks, such as inaccurate cold stimulation, discomfort with probing, impractical staining techniques, and difficulty in distinguishing harmless craze lines from pathological cracks. To address this challenge, for the first time, we are proposing a novel approach by utilizing luminescent Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (3 mol %), K<sup>+</sup> (1 wt %) nanophosphor for improved imaging and diagnosis of cracked tooth syndrome. Herein, the double perovskite structured Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (1–11 mol %), M<sup>+</sup> (M<sup>+</sup> = Na, K, and Li (1 wt %)) nanophosphors were synthesized via the sonochemical route. The photoluminescence emission spectra of the prepared Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (1–11 mol %) nanophosphors displaying distinct peaks at 583, 595, 613, 662, and 720 nm, which ascribed to transitions from state <sup>5</sup>D<sub>0</sub> to <sup>7</sup>F<sub>J</sub> (J = 1–4) state of the Eu<sup>3+</sup> ions, respectively. By adopting a strategic charge compensation mechanism, the enhancement in the luminescence emission intensity of about 1.5-fold was achieved after co-doping K<sup>+</sup> (1 wt %) with Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (3 mol %) nanophosphor. The photometric studies of the phosphors portray their orange-red emission with excellent quantum efficiency (82.52 %), and color purity (∼ 99 %). The emission intensity was sustained up to 73.71 % at 473 K, indicating excellent thermal stability of the phosphor. The <em>in vitro</em> cytotoxicity assessments of the optimized nanophosphor demonstrated its biocompatibility on normal non-malignant oral fibroblasts. The visualized microcracks in the tooth using optimized Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (3 mol %), K<sup>+</sup> (1 wt %) nanophosphor under UV excitation of UV 365 and 395 nm light revealed the orientation of microcracks, crack width, depth of the crack, and microcrack branching without any stain. The aforementioned results demonstrated that the proposed methodology paves the way for a new avenue in dental imaging technology with the potential to revolutionize and improve patient care outcomes.</div></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"28 \",\"pages\":\"Article 100531\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842024000816\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000816","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Leveraging photosensitive and thermally stable luminescent Ba2ZnWO6:Eu3+, M+ (M+= Na, K , and Li) nanophosphor for targeted non-invasive and stain-free visualization of cracked tooth syndrome
The cracked tooth syndrome poses a significant challenge in dentistry, thereafter untreated cases often lead to severe complications, such as pulpitis or complete tooth fracture, ultimately contributing to tooth loss. However, the conventional diagnostic methods to visualize microcracks in the tooth suffer from severe drawbacks, such as inaccurate cold stimulation, discomfort with probing, impractical staining techniques, and difficulty in distinguishing harmless craze lines from pathological cracks. To address this challenge, for the first time, we are proposing a novel approach by utilizing luminescent Ba2ZnWO6:Eu3+ (3 mol %), K+ (1 wt %) nanophosphor for improved imaging and diagnosis of cracked tooth syndrome. Herein, the double perovskite structured Ba2ZnWO6:Eu3+ (1–11 mol %), M+ (M+ = Na, K, and Li (1 wt %)) nanophosphors were synthesized via the sonochemical route. The photoluminescence emission spectra of the prepared Ba2ZnWO6:Eu3+ (1–11 mol %) nanophosphors displaying distinct peaks at 583, 595, 613, 662, and 720 nm, which ascribed to transitions from state 5D0 to 7FJ (J = 1–4) state of the Eu3+ ions, respectively. By adopting a strategic charge compensation mechanism, the enhancement in the luminescence emission intensity of about 1.5-fold was achieved after co-doping K+ (1 wt %) with Ba2ZnWO6:Eu3+ (3 mol %) nanophosphor. The photometric studies of the phosphors portray their orange-red emission with excellent quantum efficiency (82.52 %), and color purity (∼ 99 %). The emission intensity was sustained up to 73.71 % at 473 K, indicating excellent thermal stability of the phosphor. The in vitro cytotoxicity assessments of the optimized nanophosphor demonstrated its biocompatibility on normal non-malignant oral fibroblasts. The visualized microcracks in the tooth using optimized Ba2ZnWO6:Eu3+ (3 mol %), K+ (1 wt %) nanophosphor under UV excitation of UV 365 and 395 nm light revealed the orientation of microcracks, crack width, depth of the crack, and microcrack branching without any stain. The aforementioned results demonstrated that the proposed methodology paves the way for a new avenue in dental imaging technology with the potential to revolutionize and improve patient care outcomes.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites