Yi Gao , Qian Yang , Li Ma , Tian Li , Qing Qi , Tian Yang , Fanbin Meng
{"title":"先进纳米复合材料中的雷达-红外线兼容隐身技术:机理和结构优化","authors":"Yi Gao , Qian Yang , Li Ma , Tian Li , Qing Qi , Tian Yang , Fanbin Meng","doi":"10.1016/j.mtnano.2024.100534","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, multifunctional detection systems and reverse detection technologies play a dominant role in military reconnaissance and stealth gaming operations. Therefore, stealth technology, as the most powerful means of reverse detection, has increasingly become a research hot spot. In particular, when the detection weapons are equipped with radar and infrared detection, how to achieve effective compatibility of stealth to minimize the loss and the success of military operations is still a major challenge in current research. Therefore, this review provides an indepth discussion and distinction between the mechanisms of radar and infrared detection technologies, respectively, while emphasizing the technical challenges involved in achieving compatible stealth. Besides, the review explores the microwave absorption and infrared stealth properties of innovative advanced nano-composites materials (MXene, graphene, and metal-organic frameworks (MOFs)) reported to date. Subsequently, the review analyzes the properties, structural design, and optimization strategies of recently reported compatible stealth materials, ranging from low-dimensional to high-dimensional structures, and discusses in detail the recent advances in compatible stealth materials. Finally, the review summarizes the advantages of developing various materials and structures in this promising field, providing a comprehensive overview of their potential and efficacy.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100534"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar-infrared compatible stealth technology in advanced nano-composite materials: Mechanisms and structural optimization\",\"authors\":\"Yi Gao , Qian Yang , Li Ma , Tian Li , Qing Qi , Tian Yang , Fanbin Meng\",\"doi\":\"10.1016/j.mtnano.2024.100534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nowadays, multifunctional detection systems and reverse detection technologies play a dominant role in military reconnaissance and stealth gaming operations. Therefore, stealth technology, as the most powerful means of reverse detection, has increasingly become a research hot spot. In particular, when the detection weapons are equipped with radar and infrared detection, how to achieve effective compatibility of stealth to minimize the loss and the success of military operations is still a major challenge in current research. Therefore, this review provides an indepth discussion and distinction between the mechanisms of radar and infrared detection technologies, respectively, while emphasizing the technical challenges involved in achieving compatible stealth. Besides, the review explores the microwave absorption and infrared stealth properties of innovative advanced nano-composites materials (MXene, graphene, and metal-organic frameworks (MOFs)) reported to date. Subsequently, the review analyzes the properties, structural design, and optimization strategies of recently reported compatible stealth materials, ranging from low-dimensional to high-dimensional structures, and discusses in detail the recent advances in compatible stealth materials. Finally, the review summarizes the advantages of developing various materials and structures in this promising field, providing a comprehensive overview of their potential and efficacy.</div></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"28 \",\"pages\":\"Article 100534\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842024000841\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000841","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Radar-infrared compatible stealth technology in advanced nano-composite materials: Mechanisms and structural optimization
Nowadays, multifunctional detection systems and reverse detection technologies play a dominant role in military reconnaissance and stealth gaming operations. Therefore, stealth technology, as the most powerful means of reverse detection, has increasingly become a research hot spot. In particular, when the detection weapons are equipped with radar and infrared detection, how to achieve effective compatibility of stealth to minimize the loss and the success of military operations is still a major challenge in current research. Therefore, this review provides an indepth discussion and distinction between the mechanisms of radar and infrared detection technologies, respectively, while emphasizing the technical challenges involved in achieving compatible stealth. Besides, the review explores the microwave absorption and infrared stealth properties of innovative advanced nano-composites materials (MXene, graphene, and metal-organic frameworks (MOFs)) reported to date. Subsequently, the review analyzes the properties, structural design, and optimization strategies of recently reported compatible stealth materials, ranging from low-dimensional to high-dimensional structures, and discusses in detail the recent advances in compatible stealth materials. Finally, the review summarizes the advantages of developing various materials and structures in this promising field, providing a comprehensive overview of their potential and efficacy.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites