{"title":"基于低频观测的 Ornstein-Uhlenbeck 过程的统计推断","authors":"Dingwen Zhang","doi":"10.1016/j.spl.2024.110286","DOIUrl":null,"url":null,"abstract":"<div><div>Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference for Ornstein–Uhlenbeck processes based on low-frequency observations\",\"authors\":\"Dingwen Zhang\",\"doi\":\"10.1016/j.spl.2024.110286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
低频观测是现实世界应用中的常见现象,因此基于低频观测对由随机微分方程(SDE)驱动的随机过程进行统计推断是一个重要问题。本文研究了利用低频观测数据对奥恩斯坦-乌伦贝克(OU)过程进行统计推断的问题。我们根据 OU 过程的解,提出了漂移参数的修正最小二乘估计器(MLSE)和扩散参数的修正二次变化估计器。尽管 OU 过程满足线性 SDE,但 MLSE 是通过非线性最小二乘法启发式得出的。与以前的方法不同,这些修正估计器在渐近上是无偏的。利用 OU 过程的遍历特性,我们还提出了三个参数的遍历估计值。通过线性模型技术和多变量马尔可夫链中心极限定理,我们利用 OU 过程的遍历特性和中心极限定理确定了这些估计器的渐近行为。蒙特卡罗模拟结果用于说明和支持我们的理论发现。
Statistical inference for Ornstein–Uhlenbeck processes based on low-frequency observations
Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.