基于稳健变异自动编码器的稳健软传感即时框架

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Journal of Process Control Pub Date : 2024-10-22 DOI:10.1016/j.jprocont.2024.103325
Fan Guo , Kun Liu , Biao Huang
{"title":"基于稳健变异自动编码器的稳健软传感即时框架","authors":"Fan Guo ,&nbsp;Kun Liu ,&nbsp;Biao Huang","doi":"10.1016/j.jprocont.2024.103325","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning (JITL) framework, a robust soft sensor modeling approach is developed based on robust Variational Autoencoder (VAE). Unlike the vanilla VAE that extracts features from the given dataset under the Gaussian prior assumption, robust VAE employs Student’s t-distribution as prior distribution to handle abnormal data. Under assumption of the Student’s t-prior, the proposed robust VAE model is capable of describing collected data contaminated with outliers. Once the robust VAE model is trained, each robust feature variable in the latent space can be determined. Subsequently, similarity measure is calculated using robust Kullback-Leibler divergence between two Student’s t-distributions, that is, the distribution of a new data sample and that of each historical data sample. After completing similarity measurement for a query sample, the weights for input-output historical data can be determined. Based on these weighted historical data samples, a robust probabilistic principal component regression (PPCR) is utilized to perform local modeling for prediction. Numerical simulations, including the Tennessee Eastman and Penicillin fermentation benchmark processes, are utilized to validate the proposed JITL-based robust soft sensor modeling method.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"143 ","pages":"Article 103325"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Just-in-time framework for robust soft sensing based on robust variational autoencoder\",\"authors\":\"Fan Guo ,&nbsp;Kun Liu ,&nbsp;Biao Huang\",\"doi\":\"10.1016/j.jprocont.2024.103325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning (JITL) framework, a robust soft sensor modeling approach is developed based on robust Variational Autoencoder (VAE). Unlike the vanilla VAE that extracts features from the given dataset under the Gaussian prior assumption, robust VAE employs Student’s t-distribution as prior distribution to handle abnormal data. Under assumption of the Student’s t-prior, the proposed robust VAE model is capable of describing collected data contaminated with outliers. Once the robust VAE model is trained, each robust feature variable in the latent space can be determined. Subsequently, similarity measure is calculated using robust Kullback-Leibler divergence between two Student’s t-distributions, that is, the distribution of a new data sample and that of each historical data sample. After completing similarity measurement for a query sample, the weights for input-output historical data can be determined. Based on these weighted historical data samples, a robust probabilistic principal component regression (PPCR) is utilized to perform local modeling for prediction. Numerical simulations, including the Tennessee Eastman and Penicillin fermentation benchmark processes, are utilized to validate the proposed JITL-based robust soft sensor modeling method.</div></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"143 \",\"pages\":\"Article 103325\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152424001653\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001653","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

利用受异常观测影响的高维数据建模一直是人们关注的实际问题。本文在及时学习(JITL)框架下,基于稳健变异自动编码器(VAE)开发了一种稳健软传感器建模方法。与在高斯先验假设下从给定数据集中提取特征的普通 VAE 不同,鲁棒 VAE 采用了 Student's t 分布作为先验分布来处理异常数据。在 Student's t 先验假设下,所提出的鲁棒 VAE 模型能够描述受到异常值污染的收集数据。一旦训练出稳健 VAE 模型,就能确定潜空间中的每个稳健特征变量。随后,利用两个学生 t 分布(即新数据样本的分布和每个历史数据样本的分布)之间的鲁棒 Kullback-Leibler 发散计算相似度。完成查询样本的相似性测量后,就可以确定输入输出历史数据的权重。在这些加权历史数据样本的基础上,利用稳健概率主成分回归(PPCR)进行局部建模预测。利用包括田纳西伊士曼和青霉素发酵基准过程在内的数值模拟来验证所提出的基于 JITL 的鲁棒软传感器建模方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Just-in-time framework for robust soft sensing based on robust variational autoencoder
Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning (JITL) framework, a robust soft sensor modeling approach is developed based on robust Variational Autoencoder (VAE). Unlike the vanilla VAE that extracts features from the given dataset under the Gaussian prior assumption, robust VAE employs Student’s t-distribution as prior distribution to handle abnormal data. Under assumption of the Student’s t-prior, the proposed robust VAE model is capable of describing collected data contaminated with outliers. Once the robust VAE model is trained, each robust feature variable in the latent space can be determined. Subsequently, similarity measure is calculated using robust Kullback-Leibler divergence between two Student’s t-distributions, that is, the distribution of a new data sample and that of each historical data sample. After completing similarity measurement for a query sample, the weights for input-output historical data can be determined. Based on these weighted historical data samples, a robust probabilistic principal component regression (PPCR) is utilized to perform local modeling for prediction. Numerical simulations, including the Tennessee Eastman and Penicillin fermentation benchmark processes, are utilized to validate the proposed JITL-based robust soft sensor modeling method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
期刊最新文献
Predictive control of flow rates and concentrations in sewage transport and treatment systems Subspace identification of dynamic processes with consideration of time delays: A Bayesian optimization scheme Editorial Board Nonstationary incipient fault detection based on hybrid supervised trend-period variational autoencoder and its application in thermal power generation An ETF-based disturbance observer-based control for multivariable processes with time delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1