层间扩展的 1T 相 MoS2 作为增强型电容式去离子阴极材料

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Desalination Pub Date : 2024-10-22 DOI:10.1016/j.desal.2024.118211
Bingxue Pang , Lijuan Xiang , Kaiwen Wang, Shupei Zeng, Jing Guo, Nan Li
{"title":"层间扩展的 1T 相 MoS2 作为增强型电容式去离子阴极材料","authors":"Bingxue Pang ,&nbsp;Lijuan Xiang ,&nbsp;Kaiwen Wang,&nbsp;Shupei Zeng,&nbsp;Jing Guo,&nbsp;Nan Li","doi":"10.1016/j.desal.2024.118211","DOIUrl":null,"url":null,"abstract":"<div><div>Molybdenum disulfide (MoS<sub>2</sub>) is a potential material for capacitive deionization (CDI) electrodes due to its large surface area and theoretical capacitance. However, its low electrical conductivity and limited spacing between layers hinder the improvement of the desalination performance. In our research, we combined phase modulation and interlayer engineering methodologies to create a CDI electrode material made of metallic phase MoS<sub>2</sub> with expanded interlayer spacing. The high conductivity of the metallic phase facilitates rapid charge transport, while the expanded interlayer spacing (increased from 6.2 Å to 9.8 Å) promotes effective utilization of active sites and reduces the barriers for ion diffusion. The created electrode showcases a notable specific capacitance (131.1 F g<sup>−1</sup> at 10 mV s<sup>−1</sup>) and an elevated capacitive contribution percentage (81 %). Additionally, it demonstrates a high desalination capacity of 47.1 mg g<sup>−1</sup> and a fast desalination rate of 2.4 mg g<sup>−1</sup> min<sup>−1</sup> in a 200 mg L<sup>−1</sup> NaCl solution. Furthermore, our density functional theory (DFT) calculations validate the essential role played by enlarged interlayer spacing in promoting Na<sup>+</sup> insertion and accelerating its diffusion kinetics.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118211"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interlayer-expanded 1T-phase MoS2 as a cathode material for enhanced capacitive deionization\",\"authors\":\"Bingxue Pang ,&nbsp;Lijuan Xiang ,&nbsp;Kaiwen Wang,&nbsp;Shupei Zeng,&nbsp;Jing Guo,&nbsp;Nan Li\",\"doi\":\"10.1016/j.desal.2024.118211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molybdenum disulfide (MoS<sub>2</sub>) is a potential material for capacitive deionization (CDI) electrodes due to its large surface area and theoretical capacitance. However, its low electrical conductivity and limited spacing between layers hinder the improvement of the desalination performance. In our research, we combined phase modulation and interlayer engineering methodologies to create a CDI electrode material made of metallic phase MoS<sub>2</sub> with expanded interlayer spacing. The high conductivity of the metallic phase facilitates rapid charge transport, while the expanded interlayer spacing (increased from 6.2 Å to 9.8 Å) promotes effective utilization of active sites and reduces the barriers for ion diffusion. The created electrode showcases a notable specific capacitance (131.1 F g<sup>−1</sup> at 10 mV s<sup>−1</sup>) and an elevated capacitive contribution percentage (81 %). Additionally, it demonstrates a high desalination capacity of 47.1 mg g<sup>−1</sup> and a fast desalination rate of 2.4 mg g<sup>−1</sup> min<sup>−1</sup> in a 200 mg L<sup>−1</sup> NaCl solution. Furthermore, our density functional theory (DFT) calculations validate the essential role played by enlarged interlayer spacing in promoting Na<sup>+</sup> insertion and accelerating its diffusion kinetics.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"593 \",\"pages\":\"Article 118211\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424009226\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009226","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

二硫化钼(MoS2)具有较大的表面积和理论电容,是电容式去离子(CDI)电极的潜在材料。然而,它的低导电性和有限的层间距阻碍了海水淡化性能的提高。在我们的研究中,我们结合了相位调制和层间工程方法,创造出一种由金属相 MoS2 制成的 CDI 电极材料,并扩大了层间间距。金属相的高电导率促进了电荷的快速传输,而扩大的层间距(从 6.2 Å 增加到 9.8 Å)促进了活性位点的有效利用,并降低了离子扩散的障碍。这种电极具有显著的比电容(10 mV s-1 时为 131.1 F g-1)和较高的电容贡献率(81%)。此外,在 200 毫克/升的氯化钠溶液中,它的脱盐能力高达 47.1 毫克/克-1,脱盐速度快达 2.4 毫克/克-1 分钟-1。此外,我们的密度泛函理论(DFT)计算还验证了扩大的层间间距在促进 Na+ 插入和加速其扩散动力学方面所起的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interlayer-expanded 1T-phase MoS2 as a cathode material for enhanced capacitive deionization
Molybdenum disulfide (MoS2) is a potential material for capacitive deionization (CDI) electrodes due to its large surface area and theoretical capacitance. However, its low electrical conductivity and limited spacing between layers hinder the improvement of the desalination performance. In our research, we combined phase modulation and interlayer engineering methodologies to create a CDI electrode material made of metallic phase MoS2 with expanded interlayer spacing. The high conductivity of the metallic phase facilitates rapid charge transport, while the expanded interlayer spacing (increased from 6.2 Å to 9.8 Å) promotes effective utilization of active sites and reduces the barriers for ion diffusion. The created electrode showcases a notable specific capacitance (131.1 F g−1 at 10 mV s−1) and an elevated capacitive contribution percentage (81 %). Additionally, it demonstrates a high desalination capacity of 47.1 mg g−1 and a fast desalination rate of 2.4 mg g−1 min−1 in a 200 mg L−1 NaCl solution. Furthermore, our density functional theory (DFT) calculations validate the essential role played by enlarged interlayer spacing in promoting Na+ insertion and accelerating its diffusion kinetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
期刊最新文献
Preparation of fully coated PEDOT: PSS film on MXene for high reliability capacitive deionization Echelon extraction of valuable components from salt lake brine substrate Efficient removal of uranium and sulfate in acid contaminated groundwater by flow electrode capacitive deionization Assessment of a pilot continuous freezing desalination system with vacuum-assisted brine extraction Reverse osmosis process combining energy consumption analysis and mass transfer in the concentration of lithium-enriched brine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1